Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversing the direction of the supercurrent in a controllable Josephson junction

Abstract

When two superconductors are connected by a weak link, a supercurrent flows, the magnitude of which is determined by the difference in the macroscopic quantum phases of the superconductors. This phenomenon was discovered by Josephson1 for the case of a weak link formed by a thin tunnel barrier: the supercurrent, I, is related to the phase difference, π, through the Josephson current–phase relation, I = Icsinπ, with Ic being the critical current which depends on the properties of the weak link. A similar relation holds for weak links consisting of a normal metal, a semiconductor or a constriction2. In all cases, the phase difference is zero when no supercurrent flows through the junction, and increases monotonically with increasing supercurrent until the critical current is reached. Here we use nanolithography techniques to fabricate a Josephson junction with a normal-metal weak link in which we have direct access to the microscopic current-carrying electronic states inside the link. We find that the fundamental Josephson relation can be changed from I = Icsinπ to I = Icsin(π + π)—that is, a π-junction—by controlling the energy distribution of the current-carrying states in the normal metal. This fundamental change in the way these Josephson junctions behave has potential implications for their use in superconducting electronics as well as in (quantum) logic circuits based on superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic distribution function and the sample layout.
Figure 2: Critical current of the SNS junction as a function of the control voltage.
Figure 3: VSNS, the voltage across the junction, and the resistance of the control channel as a function of the current I.

Similar content being viewed by others

References

  1. Josephson, B. D. Possible new effects in superconducting tunneling. Phys. Lett. 1, 251–253 ( 1962).

    Article  ADS  Google Scholar 

  2. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–169 (1979).

    Article  ADS  Google Scholar 

  3. Kulik, I. O. Macroscopic quantization and the proximity effect in S-N-S junctions. Zh. Eksp. Teor. Fiz. 57, 1745–1750 (1969); Sov. Phys. JETP 30, 944–950 (1970).

    Google Scholar 

  4. Ishii, C. Josephson currents through junctions with normal metal barriers. Prog. Theor. Phys. 5, 1525–1547 (1972).

    Google Scholar 

  5. Bardeen, J. & Johnson, J. L. Josephson current flow in pure superconducting-normal-superconducting junctions. Phys. Rev. B 5, 72–78 (1972 ).

    Article  ADS  Google Scholar 

  6. Van Wees, B. J., Lenssen, K.-M. H. & Harmans, C. J. P. M. Transmission formalism for supercurrent flow in multiprobe superconductor-semiconductor devices. Phys. Rev. B 44, 470–473 ( 1991).

    Article  ADS  Google Scholar 

  7. Wendin, G. & Shumeiko, V. S. Giant Josephson current through a single bound state in a superconducting tunnel junction. Phys. Rev. B 53, R6006–R6009 ( 1996).

    Article  ADS  CAS  Google Scholar 

  8. Chang, L.-F. & Bagwell, P. F. Control of Andreev level occupation in a Josephson junction by a normal metal probe. Phys. Rev. B 55, 12678–12690 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Volkov, A. F. New phenomena in Josephson SINIS junctions. Phys. Rev. Lett. 74, 4730–4733 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Volkov, A. F. & Takayamagi, H. Long range phase coherent effects in the transport properties of mesoscopic superconductor–normal-metal structures. Phys. Rev. B 56, 11184– 11194 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Wilhelm, F. K., Schön, G. & Zaikin, A. D. Mesoscopic superconducting-normal metal-superconducting transistor. Phys. Rev. Lett. 81, 1682– 1685 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Yip, S.-K. Energy resolved supercurrent between two superconductors. Phys. Rev. B 58, 5803–5807 ( 1998).

    Article  ADS  CAS  Google Scholar 

  13. Morpurgo, A. F., Klapwijk, T. M. & van Wees, B. J. Hot electron tunable supercurrent. Appl. Phys. Lett. 72, 966–968 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Pothier, H., Guéron, S., Birge, N. O., Esteve, D. & Devoret, M. H. Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490 –3493 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Pothier, H., Guéron, S., Birge, N. O., Estève, D. & Devoret, M. H. Energy distribution of electrons in an out-of-equilbrium metallic wire. Z. Phys. B 104, 178– 182 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Bulaevski, L. N., Kuzii, V. V. & Sobyanin, A. A. On possibility of spontaneous magnetic flux in a josephson junction containing magnetic impurities. Solid State Commun. 25, 1053–1057 ( 1978).

    Article  ADS  Google Scholar 

  17. Mühge, Th. et al. Possible origin for oscillatory superconducting transition temperature in superconducting/ferromagnet multilayers. Phys. Rev. Lett. 77, 1857–1860 ( 1996).

    Article  ADS  Google Scholar 

  18. van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in high-temperature superconductors—evidence for d x 2 − y 2 symmetry. Rev. Mod. Phys. 67, 515–535 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Echternach, P. M., Ghershenson, M. E. & Bozler, M. H. Evidence of interference between electro-phonon and electron-impurity scattering on the conductivity of thin metal films. Phys. Rev. B 47, 13659–13663 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Wellstood, F. C., Urbina, C. & Clarke, J. Hot electron effects in metals. Phys. Rev. B 49, 5942–5955 ( 1994).

    Article  ADS  CAS  Google Scholar 

  21. Wilhelm, F. K., Zaikin, A. D. & Schön, G. Supercurrent in a mesoscopic proximity wire. J. Low Temp. Phys. 106, 305–310 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Estève, D. et al. in Mesoscopic Electron Transport: NATO ASI series E, vol. 345 375–406 (eds Sohn, L. L. et al.) (Kluwer Academic, Dordrecht/Boston/London, (1997).

    Book  Google Scholar 

  23. Van Wees, B. J. & Takayanagi, H. in Mesoscopic Electron Transport: NATO ASI series E, vol. 345, 469 –502 (eds Sohn, L. L. et al.) (Kluwer Academic, Dordrecht/Boston/London, (1997).

    Book  Google Scholar 

Download references

Acknowledgements

We thank F. K. Wilhelm for discussions. This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the Stichting voor Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. A. Baselmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baselmans, J., Morpurgo, A., van Wees, B. et al. Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999). https://doi.org/10.1038/16204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing