Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ratios of ferrous to ferric iron from nanometre-sized areas in minerals

Abstract

Minerals with mixed valence states are widespread and form in many different rock types1. They can contain, for example, Fe2+–Fe3+ and Mn2+–Mn3+–Mn4+, with the ratios of oxidation states reflecting the redox conditions under which the host materials crystallized. The distribution of the ratio of iron (III) to total iron content (Fe3+/ΣFe) in minerals reflects the oxidation states of their host rocks and is therefore important for answering fundamental questions about the Earth's evolution and structure2,3,4,5,6,7,8. Iron is the most sensitive and abundant indicator of oxidation state, but many mineral samples are too fine-grained and heterogeneous to be studied by standard methods such as Mössbauer spectroscopy, electron microprobe, and wet chemistry. Here we report on the use of electron energy-loss spectroscopy with a transmission electron microscope to determine Fe3+/ΣFe in minerals at the nanometre scale. This procedure is efficient for determining Fe3+/ΣFe ratios of minor and major amounts of iron on a scale heretofore impossible and allows information to be obtained not only from ultra-fine grains but also, for example, at reaction fronts in minerals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the Fe L2,3 edges of fayalite and aegerine.
Figure 2: Fe L2,3 edges of elemental Fe and selected minerals containing single-valent Fe.
Figure 3: Fe L2,3 edges of selected materials containing mixed-valent Fe.
Figure 4: Comparison of Fe3+/ΣFe from EELS and published results (from Table 1).

Similar content being viewed by others

References

  1. Burns, R. G. in Mixed Valency Systems: Applications in Chemistry, Physics and Biology (ed. Prassides, K.) 175–199 (Kluwer Academic, Boston, 1991).

    Book  Google Scholar 

  2. Arculus, R. J. Oxidation status of the mantle: Past and present. Annu. Rev. Earth Planet. Sci. 13, 75–95 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Carmichael, I. S. E. & Ghiorso, M. S. Oxidation–reduction relations in basic magma: a case for homogenous equilibria. Earth Planet. Sci. Lett. 78, 200–210 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Wood, B. J. & Virgo, D. Upper mantle oxidation state: Ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta 53, 1277–1291 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Canil, D., Virgo, D. & Scarfe, C. M. Oxidation state of mantle xenoliths from British Columbia, Canada. Contrib. Mineral. Petrol. 104, 453–462 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Luth, R. W., Virgo, D., Boyd, F. R. & Wood, B. J. Ferric iron in mantle derived garnets: Implications for thermobarometry and for the oxidation state of the mantle. Contrib. Mineral. Petrol. 104, 56–72 (1990).

    Article  ADS  CAS  Google Scholar 

  7. McCammon, C., Hutchison, M. & Harris, J. Ferric iron content of mineral inclusions in diamonds from Sao Luiz: A view into the lower mantle. Science 278, 434–436 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Holland, H. D. Model for the evolution of the earth's atmosphere. Geol. Soc. Am. (Budington vol.) 447–477 (1962).

    Google Scholar 

  9. Virgo, D., Luth, R. W., Moats, M. A. & Ulmer, G. C. Constraints on the oxidation state of the mantle: An electrochemical and 57Fe Mössbauer study of mantle-derived ilmenites. Geochim. Cosmochim. Acta 52, 1781–1794 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hofer, H. E., Brey, G. P., Schulz-Dobrick, B. & Oberhansli, R. The determination of the oxidation state of iron by the electron microprobe. Eur. J. Mineral. 6, 407–418 (1994).

    Article  ADS  Google Scholar 

  11. Delaney, J. S., Bajt, S., Sutton, S. R. & Dyar, M. D. in Mineral Spectroscopy: A Tribute to Roger G. Burns (eds Dyar, M. D., McCammon, C. & Schaefer, M. W.) 165–171 (Spec. Publ. No. 5, Geochemical Soc., 1996).

    Google Scholar 

  12. Droubay, T., Mursky, G. & Tonner, B. P. High-resolution x-ray absorption microspectroscopy of lamellar phases in natural ilmenite. J. Electron. Spectrosc. 84, 159–169 (1997).

    Article  CAS  Google Scholar 

  13. Raeburn, S. P., Ilton, E. S. & Veblen, D. R. Quantitative determination of the oxidation state of iron in biotite using X-ray photoelectron spectroscopy: I. Calibration. Geochim. Cosmochim. Acta 61, 4519–4530 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Raeburn, S. P., Ilton, E. S. & Veblen, D. R. Quantitative determination of the oxidation state of iron in biotite using X-ray photelectron spectroscopy: II. In situ analyses. Geochim. Cosmochim. Acta 61, 4531–4537 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Harris, J., Hutchison, M. T., Hursthouse, M., Light, M. & Harte, B. Anew tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds. Nature 387, 486–488 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Mao, H.-K., Shen, G. & Hemley, R. J. Multivariable dependence of Fe-Mg partitioning in the lower mantle. Science 278, 2098–2100 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Wood, B. J. & Rubie, D. C. The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe-Mg partitioning experiments. Science 273, 1522–1524 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Disko, M. M., Ahn, C. C. & Fultz, B. Transmission Electron Energy Loss Spectrometry in Materials Science (Minerals, Metals & Materials Soc., Warrendale, IL, 1992).

    Google Scholar 

  19. Garvie, L. A. J. & Craven, A. J. High-resolution parallel electron energy-loss spectroscopy of Mn L2,3-edges in inorganic manganese compounds. Phys. Chem. Minerals 21, 191–206 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Garvie, L. A. J. & Buseck, P. R. in Boron Mineralogy, Petrology and Geochemistry (eds Grew, E. S. & Anovitz, L. M.) 821–843 (Reviews in Mineralogy vol. 33, Mineralogical Soc. Am., Washington DC, 1996).

    Book  Google Scholar 

  21. Garvie, L. A. J., Craven, A. J. & Brydson, R. Use of electron-energy loss near-edge fine structure in the study of minerals. Am. Mineral. 79, 411–425 (1994).

    CAS  Google Scholar 

  22. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd edn (Plenum, New York, 1996).

    Book  Google Scholar 

  23. van der Laan, G. & Kirkman, I. W. The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J. Phys.: Condens. Matter. 4, 4189–4204 (1992).

    ADS  CAS  Google Scholar 

  24. Browning, N. D., Chisholm, M. F. & Pennycook, S. J. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Bradley, J. P. Nanometer-scale mineralogy and petrography of fine-grained aggregates in anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 58, 2123–2134 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Colliex, C. New trends in STEM-based nano-EELS analysis. J. Electron Microsc. 45, 44–50 (1996).

    Article  CAS  Google Scholar 

  27. Czank, M., Mayer, J. & Klein, U. Electron spectroscopic imaging (ESI): A new method to reveal the existence of nm-scale exsolution lamellae. Eur. J. Mineral. 9, 1199–1206 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Righter, K. & Carmichael, I. S. E. Mega-xenocrysts in alkali olivine basalts: Fragments of disrupted assemblages. Am. Mineral. 78, 1230–1245 (1993).

    CAS  Google Scholar 

  29. McGuire, A. V., Francis, C. A. & Dyar, M. D. Minerals standards for electron microprobe analysis of oxygen. Am. Mineral. 77, 1087–1091 (1992).

    CAS  Google Scholar 

  30. Gudmundsson, G. & Holloway, J. R. Activity–composition relationships in the system Fe-Pt at 1300 and 1400 °C and at 1 atm and 20 kbar. Am. Mineral. 78, 178–186 (1993).

    CAS  Google Scholar 

  31. Van Aken, P. A., Liebscher, B. & Styrsa, V. S. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 5, 323–327 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Rez and J. Bradley for discussions, and K. Righter, D. Canil and G.Gudmundsson for providing us with samples. This work was supported by the Earth Sciences Division of the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence A. J. Garvie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvie, L., Buseck, P. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998). https://doi.org/10.1038/25334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25334

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing