Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements

Abstract

About half of the ‘anthropogenic’ CO2 emitted to the atmosphere is taken up by the oceans and terrestrial biosphere1, and the amount sequestered by the ocean is generally estimated using numerical ocean carbon-cycle models2. But these models often differ markedly3, resulting in different estimated spatial and temporal patterns and magnitudes of uptake. Because of its importance climatically, the CO2 flux needs to be verified using field measurements. Accurate estimates of CO2 uptake have been difficult to obtain, however, as the annual increase of dissolved inorganic carbon (DIC) concentration in surface water due to anthropogenic input is 0.05% of the total DIC, an order of magnitude lower than past measurement precision. Early measurement-based estimates4,5 of total anthropogenic CO2 inventory in the ocean have recently been improved on6,7, and new approaches have been proposed for determining changes in ocean DIC concentration over one to two decades8,9. Here we use recent improvements in DIC measurement techniques to determine changes in DIC concentrations between 1978 and 1995 in the Indian Ocean. Our method subtracts decadal-scale natural variability, enabling the ocean anthropogenic CO2 increase in this region over the 17-year period to be determined. The calculated uncertainties and known measurement capabilities allow us to define the minimum sampling strategies that will be required to quantify the regional and global anthropogenic CO2 oceanic uptake over future decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DIC increase in the upper thermocline.
Figure 2: Anthropogenic CO2 signal in the ocean.

Similar content being viewed by others

References

  1. Keeling, C. D. & Whorf, T. in Trends '93: A Compendium of Data on Global Change (eds Boden, T., Kaiser, D., Sepanski, R. & Stoss, F.) 16–24 (CDIAC, ORNL, Oak Ridge, Tennessee, (1994)).

    Google Scholar 

  2. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Orr, J. C. et al. Transition time for ocean carbon-cycle model comparison. Research GAIM 1, 8–10 (1997).

    Google Scholar 

  4. Brewer, P. G. Direct observation of the oceanic CO2increase. Geophys. Res. Lett. 5, 997–1000 (1979).

    Article  ADS  Google Scholar 

  5. Chen, C.-T. A. & Millero, F. J. Gradual increase of oceanic CO2. Nature 277, 205–206 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Gruber, N., Sarmiento, J. L. & Stocker, T. F. An improved method for detecting anthropogenic CO2in the oceans. Glob. Biogeochem. Cycle 10, 809–837 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Gruber, N. Anthropogenic CO2in the Atlantic Ocean. Glob. Biogeochem. Cycle 12, 165–191 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Wallace, D. W. R. Monitoring global ocean carbon inventories. OOSDP Background Rep. 5(Ocean Obs. Syst. Dev. Panel, Texas A & M Univ., College Station, (1995)).

  9. Slansky, C. M., Feely, R. A. & Wanninkhof, R. in Biogeochemical Processes in the North Pacific (ed Tsunogai, S.) 70–79 (Japan Marine Science Foundation, Tokyo, (1997)).

    Google Scholar 

  10. Bullister, J. L. Chlorofluorocarbons as time dependent tracers in the Ocean. Ocean. Mag. 2, 12–17 (1989).

    Article  Google Scholar 

  11. Broecker, W. S., Sutherland, S., Smethie, W., Peng, T.-H. & Ostlund, G. Oceanic radiocarbon: separation of the natural and bomb components. Glob. Biogeochem. Cycle 9, 263–288 (1996).

    Article  ADS  Google Scholar 

  12. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycle 8, 65–80 (1995).

    Article  ADS  Google Scholar 

  13. Sarmiento, J. L., Murnane, R. & Le Quéré, C. Air–sea CO2transfer and the carbon budget of the North Atlantic. Phil Trans. R. Soc. Lond. B 348, 211–218 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Murnane, R., Sarmiento, J. L. & Le Quéré, C. The spatial distribution of air–sea CO2fluxes and the interhemispheric transport of carbon by the oceans. Glob. Biogeochem. Cycle (in the press).

  15. Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K. & Wong, C. S. Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated continuous gas extraction system and coulometric detector. Mar. Chem. 44, 167–189 (1993).

    Article  CAS  Google Scholar 

  16. Carpenter, J. H. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10, 141–143 (1965).

    Article  ADS  CAS  Google Scholar 

  17. Friederich, G. E., Sherman, P. & Codispoti, L. A. Ahigh precision automated Winkler titration system based on a HP-85 computer, a simple colorimeter and an inexpensive electromechanical buret. Bigelow Lab. Tech. Rep. 42, 1–24 (1984).

    Google Scholar 

  18. Bullister, J. L. & Weiss, R. F. Determination of CCl3F and CCl2F2in seawater and air. Deep-Sea Res. 35, 839–853 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Bradshaw, A. L., Brewer, P. G., Shafer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric acid titration in the GEOSECS program. Earth Planet. Sci. Lett. 55, 99–115 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Brewer, P. G., Bradshaw, A. L. & Williams, R. T. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 348–370 (Springer, New York, (1986)).

    Book  Google Scholar 

  21. Takahashi, T. & Bainbridge, A. E. in GEOSECS Atlantic Expedition 1(ed. Bainbridge, A. E.) 7–10 (US Gov. Printing Office, Washington DC, (1981)).

    Google Scholar 

  22. Takahashi, T. in GEOSECS Indian Ocean Expedition 5(eds Weiss, R., Broecker, W. S., Craig, H. & Spencer, D.) 5–7 (US Gov. Printing Office, Washington DC, (1983)).

    Google Scholar 

  23. Weiss, R., Broecker, W. S., Craig, H. & Spencer, D. GEOSECS Indian Ocean Expedition 5(US Gov. Printing Office, Washington DC, (1983)).

    Google Scholar 

  24. Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907–6924 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Millero, F. J., Lee, K. & Roche, M. Distribution of alkalinity in the surface waters of the major oceans. Mar. Chem. 60, 111–130 (1998).

    Article  CAS  Google Scholar 

  26. Conway, T. J. et al. Atmospheric carbon dioxide measurements in the remote global troposphere 1981–1984. Tellus 40B, 81–115 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Conway, T. J. et al. Evidence for interannual variability of the carbon cycle from the NOAA/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res. 99, 22831–22855 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the officers and crew of the NOAA ship Malcolm Baldrige for their assistance; T. Lantry, M. Roberts, H. Chen and D. Greeley for DIC and f CO 2 analyses and data reduction; D. Wisegarver, F. Menzia and D. Greeley, for CFC analysis; G. Thomas, D. Anderson and R. Roddy for CTD operation, and oxygen and salinity analyses; R. Molinari and A. Ffield for CTD data reduction; T. Hughes for providing the DIC results from Princeton annual mean ocean GCM; and J. Orr for constructive comments. This research was funded by the NOAA Climate and Global Change (C&GC) program and the NOAA Environmental Research Laboratories. We thank J. Todd of the C&GC office for supporting the NOAA component of the WOCE repeat hydrography.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, TH., Wanninkhof, R., Bullister, J. et al. Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements. Nature 396, 560–563 (1998). https://doi.org/10.1038/25103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing