Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular-wire behaviour in p -phenylenevinylene oligomers

Abstract

Electron transfer from electron-donor to electron-acceptor molecules via a molecular ‘bridge’ is a feature of many biological andchemical systems. The electronic structure of the bridge component in donor–bridge–acceptor (DBA) systems is known to play a critical role in determining the ease of electron transfer1,2. In most DBA systems, the rate at which electron transfer occurs scales exponentially with the donor–acceptor distance — effectively the length of the bridge molecule. But theory predicts that regimes exist wherein the distance dependence may be very weak, the bridge molecules essentially acting as incoherent molecular wires3,4,5,6. Here we show how these regimes can be accessed by molecular design. We have synthesized a series of structurally well-defined DBA molecules that incorporate tetracene as the donor and pyromellitimide as the acceptor, linked by p -phenylenevinylene oligomers of various lengths. Photoinduced electron transfer in this series exhibits very weak distance dependence for donor–acceptor separations as large as 40 Å, with rate constants of the order of 1011 s−1. These findings demonstrate the importance of energy matching between the donor and bridge components for achieving molecular-wire behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Optical absorption spectra.
Figure 3: Distance dependence of charge separation and recombination rate constants.
Figure 4: The LUMO (solid lines) and HOMO (dashed lines) energies of TET and the five bridge molecules.

Similar content being viewed by others

References

  1. Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 100, 13148–13168 (1996).

    Article  CAS  Google Scholar 

  2. Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992).

    Article  CAS  Google Scholar 

  3. Ratner, M. A. & Jortner, J. in Molecular Electronics(eds Jortner, J. & Ratner, M.) 5–72 (Blackwell, Oxford, (1997)).

    Google Scholar 

  4. Davis, W. B., Wasielewski, M. R., Ratner, M. A., Mujica, V. & Nitzan, A. Electron transfer rates in bridged molecular systems: A phenomenological approach to relaxation. J. Phys. Chem. A 101, 6158–6164 (1997).

    Article  CAS  Google Scholar 

  5. Okada, A., Chernyak, V. & Mukamel, S. Solvent reorganization in long-range electron transfer: density matrix approach. J. Phys. Chem. A 102, 1241–1251 (1998).

    Article  CAS  Google Scholar 

  6. Pollard, W. T., Felts, A. K. & Friesner, R. A. The Redfield equation in condensed-phase quantum dynamics. Adv. Chem. Phys. 93, 77–134 (1996).

    CAS  Google Scholar 

  7. Winkler, J. R. & Gray, H. B. Electron transfer in ruthenium-modified proteins. Chem. Rev. 92, 369–379 (1992).

    Article  CAS  Google Scholar 

  8. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. & Dutton, P. L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Lewis, F. D.et al. Distance-dependent electron transfer in DNA hairpins. Science 277, 673–676 (1997).

    Article  CAS  Google Scholar 

  10. Holmlin, R. E., Dandliker, P. J. & Barton, J. K. Charge transfer through the DNA base stack. Angew. Chem. Int. Edn. Engl. 36, 2715–2730 (1998).

    Google Scholar 

  11. Johnson, M. D., Miller, J. R., Green, N. S. & Closs, G. L. Distance dependence of intramolecular hole and electron transfer in organic radical ions. J. Phys. Chem. 93, 1173–1176 (1989).

    Article  CAS  Google Scholar 

  12. Oevering, H.et al. Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges: distance and solvent dependence. J. Am. Chem. Soc. 109, 3258–3269 (1987).

    Article  CAS  Google Scholar 

  13. Helms, A., Heiler, D. & McLendon, G. Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence. J. Am. Chem. Soc. 114, 6227–6238 (1992).

    Article  CAS  Google Scholar 

  14. Ribou, A.-C.et al. Intervalence electron transfer in pentaammineruthenium complexes of dipyridylpolyenes, dipyridylthiophene, and dipyridylfuran. Inorg. Chem. 33, 1325–1329 (1994).

    Article  CAS  Google Scholar 

  15. Arrhenius, T. S., Blanchard-Desce, M., Dvolaitzky, M., Lehn, J. M. & Malthete, J. Molecular devices: caroviologens as an approach to molecular wires — synthesis and incorporation into vesicle membranes. Proc. Natl Acad. Sci. USA 83, 5355–5359 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Wasielewski, M. R.et al. in Photochemical Energy Conversion(ed. Norris, J. R.) 135–147 (Elsevier, New York, (1989)).

    Google Scholar 

  17. Effenberger, F. & Wolf, H. C. Terminally substituted conjugated polyenes: synthesis and energy transfer properties. New J. Chem. 15, 117–123 (1991).

    CAS  Google Scholar 

  18. Tolbert, L. M. Solitons in a box: the organic chemistry of electrically conducting polyenes. Acc. Chem. Res. 25, 561–568 (1992).

    Article  CAS  Google Scholar 

  19. Tour, J. M. Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem. Rev. 96, 537–553 (1996).

    Article  CAS  Google Scholar 

  20. Grosshenny, V., Harriman, A. & Ziessel, R. Towards the development of molecular wires: electron localization, exchange, and transfer in alkyne-bridged multinuclear complexes. Angew. Chem. Int. Edn. Engl. 34, 2705–2708 (1996).

    Article  Google Scholar 

  21. Sachs, S. B.et al. Rates of interfacial electron transfer through π-conjugated spacers. J. Am. Chem. Soc. 119, 10563–10564 (1997).

    Article  CAS  Google Scholar 

  22. Burgdorff, C., Ehrhardt, S. & Loehmannsroeben, H. G. Photophysical properties of tetracene derivatives in solution. 2. Halogenated tetracene derivatives. J. Phys. Chem. 95, 4246–4249 (1991).

    Article  CAS  Google Scholar 

  23. Greenfield, S. R., Svec, W. A., Gosztola, D. & Wasielewski, M. R. Multistep photochemical charge separation in rod-like molecules based on aromatic imides and diimides. J. Am. Chem. Soc. 118, 6767–6777 (1996).

    Article  CAS  Google Scholar 

  24. Viehbeck, A., Goldberg, M. J. & Kovac, C. A. Electrochemical properties of polyimides and related imide compounds. J. Electrochem. Soc. 137, 1460–1466 (1990).

    Article  CAS  Google Scholar 

  25. Perkampus, H.-H. UV-VIS Atlas of Organic Compounds(VCH, Weinheim, (1992)).

    Google Scholar 

  26. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  ADS  CAS  Google Scholar 

  27. Mujica, V., Kemp, M., Roitberg, A. & Ratner, M. Current-voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification. J. Chem. Phys. 104, 7296–7305 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Joachim. C. & Vinuesa, J. F. Length dependence of the electronic transparence (conductance) of a molecular wire. Europhys. Lett. 33, 635–640 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Samanta, M. P., Tian, W., Datta, S., Henderson, J. I. & Kubiak, C. P. Electronic conduction through organic molecules. Phys. Rev. B: Condens. Matter 53, R7626–R7629 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Burn, P. L.et al. Chemical tuning of the electronic properties of poly(p-phenylenevinylene)-based copolymers. J. Am. Chem. Soc. 115, 10117–10124 (1993).

    Article  CAS  Google Scholar 

  31. Hoofman, R. J. O. M., De Haas, M. P., Siebbeles, L. D. A. & Warman, J. M. Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature 392, 54–56 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy (M.R.W.), the Chemistry Division of the NSF and ONR (M.A.R.), and the Link Energy Foundation (W.B.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Wasielewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, W., Svec, W., Ratner, M. et al. Molecular-wire behaviour in p -phenylenevinylene oligomers. Nature 396, 60–63 (1998). https://doi.org/10.1038/23912

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23912

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing