Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interface structure between silicon and its oxide by first-principles molecular dynamics

Abstract

The requirement for increasingly thin (<50 Å) insulating oxide layers in silicon-based electronic devices highlights the importance of characterizing the Si–SiO2 interface structure at the atomic scale. Such a characterization relies to a large extent on an understanding of the atomic-scale mechanisms that govern the oxidation process. The widely used Deal–Grove model invokes a two-step process in which oxygen first diffuses through the amorphous oxide network before attacking the silicon substrate, resulting in the formation of new oxide at the buried interface1. But it remains unclear how such a process can yield the observed near-perfect interface2,3,4,5,6,7,8,9,10,11,12. Here we use first-principles molecular dynamics13,14,15 to generate a model interface structure by simulating the oxidation of three silicon layers. The resulting structure reveals an unexpected excess of silicon atoms at the interface, yet shows no bonding defects. Changes in the bonding network near the interface occur during the simulation via transient exchange events wherein oxygen atoms are momentarily bonded to three silicon atoms — this mechanism enables the interface to evolve without leaving dangling bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ‘Ball and stick’ model of the Si(001)–SiO2 interface structure after the final quench.
Figure 2: Threefold-coordinated O atom.

Similar content being viewed by others

References

  1. Deal, B. E. & Grove, A. S. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770–3778 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Rochet, F.et al. The thermal oxidation of silicon: The special case of the growth of very thin films. Adv. Phys. 35, 237–274 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Stoneham, A. M., Grovenor, C. R. M. & Cerezo, A. Oxidation and the structure of the silicon/oxide interface. Phil. Mag. B 55, 201–210 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Mott, N. F., Rigo, S., Rochet, F. & Stoneham, A. M. Oxidation of silicon. Phil. Mag. B 60, 189–212 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Gusev, E. P., Lu, H. C., Gustafsson, T. & Garfunkel, E. Growth mechanism of the thin silicon oxide films on Si(100) studied by medium-energy ion scattering. Phys. Rev. B 52, 1759–1775 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Gusev, E. P., Lu, H. C., Gustafsson, T. & Garfunkel, E. in The Physics and Chemistry of SiO2and the Si-SiO2Interface — 3Vol. 96-1 (eds Massoud, H. Z., Poindexter, E. H. & Helms, C. R.) 49–58 (Electrochemical Soc., Pennington, (1996)).

    Google Scholar 

  7. Fahey, P., Griffin, P. B. & Plummer, J. D. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289–384 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Banaszak Holl, M. M. & McFeely, F. R. Si/SiO2Interface: New structures and well-defined model systems. Phys. Rev. Lett. 71, 2441–2444 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Banaszak Holl, M. M., Lee, S. & McFeely, F. R. Core-level photoemission and the structure of the Si/SiO2interface: A reappraisal. Appl. Phys. Lett. 85, 1097–1099 (1994).

    Article  ADS  Google Scholar 

  10. Pasquarello, A., Hybertsen, M. S. & Car, R. Si 2p core-level shifts at the Si(001)-SiO2interface: A first-principles study. Phys. Rev. Lett. 74, 1024–1027 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Pasquarello, A., Hybertsen, M. S. & Car, R. Theory of Si 2p core-level shifts at the Si(001)-SiO2interface. Phys. Rev. B 53, 10942–10950 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Pasquarello, A., Hybertsen, M. S. & Car, R. Structurally relaxed models of the Si(001)-SiO2interface. Appl. Phys. Lett. 68, 625–627 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Pasquarello, A., Laasonen, K., Car, R., Lee, C. & Vanderbilt, D. Ab initio molecular dynamics for d -electron systems: Liquid copper at 1500 K. Phys. Rev. Lett. 69, 1982–1985 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Laasonen, K., Pasquarello, A., Car, R., Lee, C. & Vanderbilt, D. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47, 10142–10153 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Witczak, S. C., Suehle, J. S. & Gaitan, M. An experimental comparison of measurement techniques to extract Si-SiO2interface trap density. Solid-State Electron. 35, 345–355 (1992).

    Article  ADS  CAS  Google Scholar 

  17. EerNisse, E. P. Stress in thermal SiO2during growth. Appl. Phys. Lett. 35, 8–10 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A., Yarmoff, J. A. & Hollinger, G. Microscopic structure of the SiO2/Si interface. Phys. Rev. B 38, 6084–6096 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Lu, Z. H., Graham, M. J., Jiang, D. T. & Tan, K. H. SiO2/Si(100) interface studied by Al Kα x-ray and synchrotron radiation photoelectron spectroscopy. Appl. Phys. Lett. 63, 2941–2943 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Oshishi, K. & Hattori, T. Periodic changes in SiO2/Si(111) interface structures with progress of thermal oxidation. Jpn J. Appl. Phys. 33, L675–L678 (1994).

    Article  ADS  Google Scholar 

  21. Sarnthein, J., Pasquarello, A. & Car, R. Structural and electronic properties of liquid and amorphous SiO2: An ab initio molecular dynamics study. Phys. Rev. Lett. 74, 4682–4685 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Sarnthein, J., Pasquarello, A. & Car, R. Model of vitreous SiO2generated by an ab initio molecular dynamics quench from the melt. Phys. Rev. B 52, 12690–12695 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Nosé, S. Amolecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  ADS  Google Scholar 

  24. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Feldman, L. C., Silverman, P. J., Williams, J. S., Jackman, T. E. & Stensgaard, I. Use of thin Si crystals in backscattering-channeling studies of the Si-SiO2interface. Phys. Rev. Lett. 41, 1396–1399 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Jackman, T. E., MacDonald, J. R., Feldman, L. C., Silverman, P. J. & Stensgaard, I. (100) and (110)Si-SiO2interface studies by MeV ion backscattering. Surf. Sci. 100, 35–42 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Kosowsky, S. D.et al. Evidence of annealing on a high-density Si/SiO2interfacial layer. Appl. Phys. Lett. 70, 3119–3121 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Filipponi, A., Evangelisti, F., Benfatto, M., Mobilio, S. & Natoli, C. R. Structural investigation of a -Si and a -Si:H using x-ray absorption spectroscopy at the Si K edge. Phys. Rev. B 40, 9636–9643 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Car, R. & Parrinello, M. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular-dynamics study. Phys. Rev. Lett. 60, 204–207 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mangili for providing visualization support. The calculations were performed on the NEC-SX4 of the Swiss Center for Scientific Computing (CSCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pasquarello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquarello, A., Hybertsen, M. & Car, R. Interface structure between silicon and its oxide by first-principles molecular dynamics. Nature 396, 58–60 (1998). https://doi.org/10.1038/23908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23908

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing