Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence against stellar chromospheric origin of Galactic cosmic rays

Abstract

Interstellar space is filled with a gas of relativistic ions and electrons — the Galactic cosmic rays. These energetic particles tie interstellar gas to ambient magnetic fields by ionizing the component molecules and atoms, and so play a role in stabilizing molecular clouds against collapse1 and regulating the collapse of protostellar clouds2. The observed energy spectrum of cosmic rays up to ≳1015 eV is consistent with their acceleration by supernova shock waves3, but the original source of cosmic-ray nuclei remains unclear. There has been a widely held belief that the source consists of a solar-like ionized medium4, probably the chromospheres of late-type Sun-like stars5. This model predicts an overabundance of easily ionized elements. Here we show that lead, which is easily ionized, is underabundant in the Galactic cosmic rays in contradiction with this model. Rather, our measurements are consistent with two other possible models: one in which the nuclei originate in interstellar gas, and in entire grains accelerated to about one per cent of the speed of light by supernova shock waves6,7; and another in which the cosmic rays contain an admixture of an exotic, freshly synthesized component8, probably originating in neutrino-driven winds from newly born neutron stars9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histogram of measured charges for GCR ions with kinetic energies >0.9 GeV per nucleon.
Figure 2: Derived GCR source abundances of Hg, Pb and actinides with respect to the Pt-group elements (75 ⩽ Z ⩽ 79).

Similar content being viewed by others

References

  1. Zweibel, E. G. & Heiles, C. Magnetic fields in galaxies and beyond. Nature 385, 131–136 (1997).

    Article  ADS  CAS  Google Scholar 

  2. McKee, C. F., Zweibel, E. G., Heiles, C. & Goodman, A. A. in Protostars and Planets III(eds Levy, E. H. & Lunine, J. I.) 327–366 (Univ. Arizona Press, Tucson,(1993)).

    Google Scholar 

  3. Gaisser, T. K. Cosmic Rays and Particle Physics(Cambridge Univ. Press, (1990)).

    Google Scholar 

  4. Webber, W. R. New experimental data and what it tells us about the sources and acceleration of cosmic rays. Space Sci. Rev. 81, 107–142 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Meyer, J.-P. Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays. Astrophys. J. Suppl. 57, 173–204 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Meyer, J.-P., Drury, L. O'C. & Ellison, D. C. Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys. J. 487, 182–196 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Ellison, D. C., Meyer, J.-P. & Drury, L. O'C. Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. Astrophys. J. 487, 197–217 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Binns, W. R.et al. in Cosmic Abundances of Matter(ed. Waddington, C. J.) 147–167 (Am. Inst. Physics, New York, (1989)).

    Google Scholar 

  9. Meyer, B. S. The r-, s-, and p-processes. Annu. Rev. Astron. Astrophys. 32, 153–190 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Wang, S.-C.et al. Phosphate glass detectors with high sensitivity to nuclear particles. Nucl. Instrum. Meth. B 35, 43–49 (1988).

    Article  Google Scholar 

  11. Fleischer, R. L., Price, P. B. & Walker, R. M. Nuclear Tracks in Solids(Univ. California Press, Berkeley, (1975)).

    Google Scholar 

  12. Westphal, A. J. & He, Y. D. Measurement of cross sections for electron capture and stripping by highly relativistic ions. Phys. Rev. Lett. 71, 1160–1163 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Westphal, A. J., Price, P. B. & Snowden-Ifft, D. P. Upper limit on the cross section for nuclear charge pickup by relativistic uranium ions. Phys. Rev. C 45, 2423–2426 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Weaver, B. A.et al. Performance of the ultraheavy collector of the Trek experiment. Nucl. Instrum. Meth.(submitted).

  15. Möller, P. & Nix, J. R. Stability and decay of nuclei at the end of the periodic system. J. Phys. G 20, 1681–1747 (1994).

    Article  ADS  Google Scholar 

  16. Geer, L. Y.et al. Charge-changing fragmentation of 10.6 GeV/nucleon 197Au nuclei. Phys. Rev. C 52, 334–345 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Clinton, R. R. & Waddington, C. J. Dependence of the interstellar propagation of ultraheavy cosmic-ray nuclei on various parameters Astrophys. J. 403, 644–657 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Reames, D. V. Coronal abundances determined from energetic particles. Adv. Space Res. 15, 41–51 (1995).

    Article  CAS  Google Scholar 

  19. Fowler, P. H.et al. Ariel 6 measurements of the fluxes of ultraheavy cosmic rays. Astrophys. J. 314, 739–746 (1987).

    Article  ADS  CAS  Google Scholar 

  20. O'Sullivan, D., Thompson, A., Keane, A. J., Drury, L. O'C. & Wenzel, K.-P. Investigation of Z ≥ 70 cosmic ray nuclei on the LDEF mission. Radiat. Meas. 26, 889–892 (1996).

    Article  CAS  Google Scholar 

  21. Epstein, R. I. The acceleration of interstellar grains and the composition of the cosmic rays. Mon. Not. R. Astron. Soc. 193, 723–729 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Cesarsky, C. J. & Bibring, J. P. in Origin of Cosmic Rays(eds Setti, G., Spada, G. & Wolfendale, A. W.) 361–362 (IAU Symp. 94, Reidel, Dordrecht, (1980)).

    Google Scholar 

  23. Binns, W. R.et al. Abundances of ultraheavy elements in the cosmic radiation: results from HEAO 3. Astrophys. J. 346, 997–1009 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Wasserburg, G. J., Busso, M. & Gallino, R. Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes. Astrophys. J. 466, L109–113 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Ramaty, R., Kozlovsky, B. & Lingenfelter, R. Cosmic rays, nuclear gamma rays and the origin of the light elements. Phys. Today 51, 30–35 (1998).

    Article  CAS  Google Scholar 

  26. Takahashi, K., Boyd, R. N., Mathews, G. J. & Yokoi, K. Bound-state beta decay of highly ionized atoms. Phys. Rev. C 36, 1522–1528 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Pfeiffer, K., Kratz, K.-L. & Thielemann, F.-K. Analysis of the solar-system r-process abundance pattern with the new ETFSI-Q mass formula. Z. Phys. A 357, 235–238 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Käppeler, F., Beer, H. & Wisshak, K. s-process nucleosynthesis — nuclear physics and the classical model. Rep. Prog. Phys. 52, 945–1013 (1989).

    Article  ADS  Google Scholar 

  30. Beer, H., Corvi, F. & Mutti, P. Neutron capture of the bottleneck isotopes 138Ba and 208Pb, s-process studies, and the r-process abundance distribution. Astrophys. J. 474, 843–861 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. O'Sullivan, M. Solarz, V. Akimov, Y. He, the staff at the AGS, and the crews of Mir and STS-74 for their assistance. We also thank the UHIC collaboration for providing measured cross-sections, and C. J. Waddington, B. S. Mayer and J.-P. Meyer for calculations and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Westphal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, A., Price, P., Weaver, B. et al. Evidence against stellar chromospheric origin of Galactic cosmic rays. Nature 396, 50–52 (1998). https://doi.org/10.1038/23887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23887

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing