Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metapopulation dynamics

Abstract

Metapopulation biology is concerned with the dynamic consequences of migration among local populations and the conditions of regional persistence of species with unstable local populations. Well established effects of habitat patch area and isolation on migration, colonization and population extinction have now become integrated with classic metapopulation dynamics. This has led to models that can be used to predict the movement patterns of individuals, the dynamics of species, and the distributional patterns in multispecies communities in real fragmented landscapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three approaches to spatial ecology.
Figure 2: The probability of extinction in the Glanville fritillary butterfly is influenced both by ecological factors and by heterozygosity, which is here used as a measure of the level of inbreeding29.
Figure 3: The incidence function model (IFM) is here parameterized for metapopulations of an insect (the Glanville fritillary butterfly, Melitae a cinxia), a passerine bird (the European nuthatch, Sitta europaea), and a small mammal (the American pika, Ochotona princeps), and the parameterized model is used to investigate the consequences of hypothetical scenarios of habitat destruction.
Figure 4: Bifurcation diagrams for the fraction of occupied habitat in metapopulations.
Figure 5: Examples of species–area (SA) curves in classic and mainland-island metapopulations predicted by a metacommunity model of non-interactive species with interspecific differences in population density66.

Similar content being viewed by others

References

  1. Nicholson, A. J. The balance of animal populations. J. Anim. Ecol. 2, 132–178 (1933).

    Article  Google Scholar 

  2. Andrewartha, H. G. & Birch, L. C. The Distribution and Abundance of Animals(University of Chicago Press, Chicago, (1954)).

    Google Scholar 

  3. Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Sixth Int. Congr. Genet. 1, 356–366 (1932).

    Google Scholar 

  5. Hanski, I. & Gilpin, M. E. Metapopulation Biology: Ecology, Genetics, and Evolution(Academic, San Diego, (1997)).

    MATH  Google Scholar 

  6. Tilman, D. & Kareiva, P. Spatial Ecology(Princeton University Press, Princeton, (1997)).

    Google Scholar 

  7. Bascompte, J. & Solé, R. V. Modeling Spatiotemporal Dynamics in Ecology(Springer, New York, (1998)).

    Google Scholar 

  8. Durrett, R. & Levin, S. A. Stochastic spatial models: a user's guide to ecological applications. Phil. Trans. R. Soc. Lond. B 343, 329–350 (1994).

    Article  ADS  Google Scholar 

  9. Forman, R. T. T. Some general principles of landscape and regional ecology. Landscape Ecology 10, 133–142 (1995).

    Article  Google Scholar 

  10. Wiens, J. A. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 43–68 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  11. Kareiva, P. & Wennergren, U. Connecting landscape patterns to ecosystem and population processes. Nature 373, 299–302 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Wilson, H. B. et al. in Modeling Spatiotemporal Dynamics in Ecology(eds Bascompte, J. & Solé, R. V.) 63–82 (Springer, New York, (1998)).

    Google Scholar 

  13. Nee, S., May, R. M. & Hassell, M. P. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 123–148 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  14. Harrison, S. in Large-scale Ecology and Conservation Biology(eds Edwards, P. J., May, R. M. & Webb, N. R.) 111–128 (Blackwell Scientific, Oxford, (1994)).

    Google Scholar 

  15. Settele, J. Species Survival in Fragmented Landscapes(Kluwer, Dordrecht, (1996)).

    Book  Google Scholar 

  16. McCullough, D. L. Metapopulations and Wildlife Conservation(Island, Washington DC, (1997)).

    Google Scholar 

  17. Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).

    Google Scholar 

  18. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control(Oxford University Press, Oxford, (1991)).

    Google Scholar 

  19. Grenfell, B. & Harwood, J. (Meta)population dynamics of infectious diseases. Trends Ecol. Evol. 12, 395–404 (1997).

    Article  CAS  Google Scholar 

  20. Bartlett, M. S. Measles periodicity and community size. J. R. Stat. Soc. A 120, 48–70 (1957).

    Article  Google Scholar 

  21. Hanski, I. Metapopulation Ecology(Oxford University Press, Oxford, in the press).

  22. Hanski, I. Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc. 42, 17–38 (1991).

    Article  Google Scholar 

  23. Gyllenberg, M., Hanski, I. & Hastings, A. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 93–122 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  24. Hanski, I. Patch-occupancy dynamics in fragmented landscapes. Trends Ecol. Evol. 9, 131–135 (1994).

    Article  CAS  Google Scholar 

  25. Hanski, I. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 69–92 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  26. Hanski, I., Moilanen, A. & Gyllenberg, M. Minimum viable metapopulation size. Am. Nat. 147, 527–541 (1996).

    Article  Google Scholar 

  27. Chesson, P. in Modeling Spatiotemporal Dynamics in Ecology(eds Bascompte, J. & Solé, R. V.) 151–166 (Springer, New York, (1998)).

    Google Scholar 

  28. Thomas, C. D. & Hanski, I. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 359–386 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  29. Saccheri, I. J. et al. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    Article  Google Scholar 

  32. Foley, P. Predicting extinction times from environmental stochasticity and carrying capacity. Cons. Biol. 8, 124–137 (1994).

    Article  Google Scholar 

  33. Royama, T. Analytical Population Dynamics(Chapman & Hall, London, (1992)).

    Book  Google Scholar 

  34. Turchin, P. in Population Dynamics: New Approaches and Synthesis(eds Cappuccino, N. & Price, P.) 19–40 (Academic, London, (1995)).

    Book  Google Scholar 

  35. den Boer, P. J. Seeing the tree for the wood: random walks or bounded fluctuations of population size? Oecologia 86, 484–491 (1991).

    Article  ADS  CAS  Google Scholar 

  36. Tilman, D. et al. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article  ADS  Google Scholar 

  37. Hastings, A. & Harrison, S. Metapopulation dynamics and genetics. Annu. Rev. Ecol. Syst. 25, 167–188 (1994).

    Article  Google Scholar 

  38. Hassell, M. P., Comins, H. N. & May, R. M. Species coexistence and self-organizing spatial dynamics. Nature 370, 290–292 (1994).

    Article  ADS  Google Scholar 

  39. Barton, N. H. & Whitlock, M. C. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 183–214 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  40. Hedrick, P. W. & Gilpin, M. E. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 166–182 (Academic, San Diego, (1997)).

    Google Scholar 

  41. Olivieri, I. & Gouyon, P.-H. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 293–324 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  42. Murphy, D. D., Freas, K. S. & Weiss, S. B. An environment-metapopulation approach to the conservation of an endangered invertebrate. Cons. Biol. 4, 41–51 (1990).

    Article  Google Scholar 

  43. Coyne, J. A., Barton, N. H. & Turelli, M. Acritique of Wright's shifting balance theory of evolution. Evolution 51, 643–671 (1997).

    Article  Google Scholar 

  44. Leimar, O. & Nordberg, U. Metapopulation extinction and genetic variation in dispersal-related traits. Oikos 80, 448–458 (1997).

    Article  Google Scholar 

  45. Wahlberg, N., Moilanen, A. & Hanski, I. Predicting the occurrence of endangered species in fragmented landscapes. Science 273, 1536–1538 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Ims, R. A. & Yoccoz, N. G. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 247–266 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  47. Turchin, P. Quantitative Analysis of Movement: Measuring and Modelling Population Redistribution in Animals and Plants(Sinaur, Sunderland, MA, (1998)).

    Google Scholar 

  48. Hanski, I. Apractical model of metapopulation dynamics. J. Anim. Ecol. 63, 151–162 (1994).

    Article  Google Scholar 

  49. ter Braak, J. F., Hanski, I. A. & Verboom, J. in Modeling Spatiotemporal Dynamics in Ecology(eds Bascompte, J. & Solé, R. V.) 167–188 (Springer, New York, (1998)).

    Google Scholar 

  50. Moilanen, A. Patch occupancy models of metapopulation dynamics: efficient parameter estimation with implicit statistical inference. Ecology(in the press).

  51. Moilanen, A., Smith, A. T. & Hanski, I. A. Long-term dynamics in a metapopulation of the American pika. Am. Nat. 152, 530–542 (1998).

    CAS  PubMed  Google Scholar 

  52. Hanski, I. Inferences from ecological incidence functions. Am. Nat. 139, 657–662 (1992).

    Article  Google Scholar 

  53. Pacala, S. W. & Levin, S. A. in Spatial Ecology(eds Tilman, D. & Kareiva, P.) 204–232 (Princeton University Press, Princeton, (1997)).

    Google Scholar 

  54. Cain, M. L. et al. Neighbourhood models of clonal growth in the white glover Trifolium repens. Am. Nat. 145, 888–917 (1995).

    Article  Google Scholar 

  55. Turchin, P. et al. in Modeling Spatiotemporal Dynamics in Ecology(eds Bascompte, J. & Solé, R. V.) 199–213 (Springer, New York, (1998)).

    Google Scholar 

  56. Maron, J. L. & Harrison, S. Spatial pattern formation in an insect host-parasitoid system. Science 278, 1619–1621 (1998).

    Article  ADS  Google Scholar 

  57. Hanski, I. & Gyllenberg, M. Two general metapopulation models and the core-satellite species hypothesis. Am. Nat. 142, 17–41 (1993).

    Article  Google Scholar 

  58. Temple, S. A. The problem of avian extinctions. Curr. Ornithol. 3, 453–485 (1986).

    Article  Google Scholar 

  59. Akçakaya, H. R. & Ferson, S. RAMAS/Space User Manual: Spatially Structured Population Models for Conservation Biology(Applied Biomathematics, New York, (1992)).

    Google Scholar 

  60. Possingham, H. P. & Noble, I. R. in Research Consultancy for the Research Assessment Commission, Forest and Timber Inquiry(Canberra, (1991)).

    Google Scholar 

  61. Sjögren-Gulve, P. & Ray, C. in Metapopulations and Wildlife Conservation(ed McCullough, D. R.) 111–138 (Island, Washington DC, (1997)).

    Google Scholar 

  62. Andrén, H. in Mosaic Landscapes and Ecological Processes(eds Hansson, L., Fahrig, L. & Merriam, G.) 225–255 (Chapman & Hall, London, (1995)).

    Book  Google Scholar 

  63. Nee, S. & May, R. M. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40 (1992).

    Article  Google Scholar 

  64. Caswell, H. & Cohen, J. E. Disturbance, interspecific interaction and diversity in metapopulations. Biol. J. Linn. Soc. 42, 193–218 (1991).

    Article  Google Scholar 

  65. Holt, R. D. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 149–165 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  66. Hanski, I. & Gyllenberg, M. Uniting two general patterns in the distribution of species. Science 275, 397–400 (1997).

    Article  CAS  Google Scholar 

  67. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography(Princeton University Press, Princeton, (1967)).

    Google Scholar 

  68. Lawton, J. H. Range, population abundance and conservation. Trends Ecol. Evol. 8, 409–413 (1993).

    Article  CAS  Google Scholar 

  69. Moilanen, A. & Hanski, I. Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79, 2503–2515 (1998).

    Article  Google Scholar 

  70. Hanski, I. & Simberloff, D. in Metapopulation Biology(eds Hanski, I. & Gilpin, M. E.) 5–26 (Academic, San Diego, (1997)).

    Book  Google Scholar 

  71. Thomas, C. D. in Aspects of the Genesis and Maintenance of Biological Diversity(eds Hochberg, M. E., Clobert, J. & Barbault, R.) 292–307 (Oxford University Press, Oxford, (1996)).

    Google Scholar 

  72. Pressey, R. L., Possingham, H. P. & Day, J. R. Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biol. Cons. 80, 207–219 (1997).

    Article  Google Scholar 

  73. With, K. A., Gardner, R. H. & Turner, M. G. Landscape connectivity and population distributions in heterogeneous landscapes. Oikos 78, 151–169 (1997).

    Article  Google Scholar 

  74. Weiss, S. J., Murphy, D. D. & White, R. R. Sun, slope and butterflies: topographic determinants of habitat quality in Euphydryas editha. Ecology 69, 1486–1496 (1988).

    Article  Google Scholar 

  75. Kindvall, O. The impact of extreme weather on habitat preference and survival in a metapopulation of the bush cricket Metrioptera bicolor in Sweden. Biol. Cons. 73, 51–58 (1995).

    Article  Google Scholar 

  76. Doak, D. F. & Mills, L. S. Auseful role for theory in conservation. Ecology 75, 615–626 (1994).

    Article  Google Scholar 

  77. Gyllenberg, M. & Hanski, I. Habitat deterioration, habitat destruction and metapopulation persistence in a heterogeneous landscape. Theor. Pop. Biol. 52, 198–215 (1997).

    Article  CAS  Google Scholar 

  78. Hanski, I. et al. Multiple equilibria in metapopulation dynamics. Nature 377, 618–621 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank S. Harrison, M. Hassell, T. Ives, J. Lawton, A. Moilanen, S. van Nouhuys, B. O'Hara, A. Ruina, I. Saccheri, M. Singer, C. Thomas, P. Turchin and N. Wahlberg for comments on the manuscript, and J. Verboom and A. Smith for supplying the nuthatch and pika data for Fig. 3. My metapopulation research has been supported by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998). https://doi.org/10.1038/23876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/23876

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing