Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors

Abstract

Magnetoresistance—the field-dependent change in the electrical resistance of a ferromagnetic material—finds applications in technologies such as magnetic recording. Near and above the Curie point, T c, corresponding to the onset of magnetic order, scattering of charge carriers by magnetic fluctuations can substantially increase the electrical resistance1,2. These fluctuations can be suppressed3 by a magnetic field, leading to a negative magnetoresistance. Magnetic scattering might also have a role in the ‘colossal’ magnetoresistance observed in some perovskite manganese oxides4,5,6, but is it not yet clear how to reconcile this behaviour with that of the conventional ferromagnetic materials. Here we show that, in generic models of magnetic scattering, the bulk low-field magnetoresistance (near and above T c) is determined by a single parameter: the charge-carrier density. In agreement with experiment3,7,8, the low-field magnetoresistance scales with the square of the ratio of the field-induced magnetization to the saturation magnetization. The scaling factor is Cx −2/3, where x is the number of charge carriers per magnetic unit cell. Data from very different ferromagnetic metals and doped semiconductors are in broad quantitative agreement with this relationship, with the notable exception of the perovskite manganese oxides (in which dynamic lattice distortions complicate and enhance4,9,10,11,12 the effects of pure magnetic scattering). Our results might facilitate searches for new materials with large bulk magnetoresistive properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-field magnetoresistance C = (Δρ/ρ)/(m (H)/msat)2 as a function of the carrier density scaled to the magnetic lattice spacing.

Similar content being viewed by others

References

  1. Fisher, M. E. & Langer, J. S. Resistive anomalies at magnetic critical points. Phys. Rev. Lett. 20, 665–668 (1968).

    Article  ADS  CAS  Google Scholar 

  2. de Gennes, P. G. & Friedel, J. Anomalies de résistivité dans certains métaux magnétiques. J. Phys. Chem. Solids 4, 71–77 (1958).

    Article  ADS  CAS  Google Scholar 

  3. von Molnar, S. & Methfessel, S. Giant negative magnetoresistance in ferromagnetic Eu1−xGdxSe. J.Appl. Phys. 38, 959–964 (1967).

    Article  ADS  CAS  Google Scholar 

  4. Ramirez, A. P. Colossal magnetoresistance. J. Phys: Condens. Matt. 9, 8171–8199 (1997).

    ADS  CAS  Google Scholar 

  5. Mathur, N. Not just a load of bolometers. Nature 390, 229–231 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 414–417 (1994).

    ADS  Google Scholar 

  7. Urushibara, A. et al. Insulator–metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 51, 14103–14109 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Shimikawa, Y., Kubo, Y. & Manako, T. Giant magnetoresistance in Tl2Mn2O7with the pyrochlore structure. Nature 379, 53–55 (1996).

    Article  ADS  Google Scholar 

  9. Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn–Teller effect and colossal magnetoresistance in La1−xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Röder, H., Zang, J. & Bishop, A. R. Lattice effects in colossal magnetoresistance perovskites. Phys. Rev. Lett. 76, 1356–1359 (1996).

    Article  ADS  Google Scholar 

  13. Cochrane, R. W., Hedgcock, F. T. & Ström-Olsen, J. O. Exchange scattering in a ferromagnetic semiconductor. Phys. Rev. B 8, 4262–4266 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Yamaguchi, S., Taniguchi, H., Takagi, H., Arima, T. & Tokura, Y. Magnetoresistance in metallic crystals of La1−xSrxCoO3. J. Phys. Soc. Jpn 64, 1885–1888 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Li, Q., Zang, J., Bishop, A. R. & Soukoulis, C. M. Charge localization in disordered colossal-magnetoresistance manganites. Phys. Rev. B 56, 4541–4544 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Furukawa, N. Magnetoresistance of the double-exchange model in infinite dimension. J. Phys. Soc. Jpn 64, 2734–2737 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Green, A. C. M., Edwards, D. M. & Kubo, K. Ageneralized coherent potential approximation for double exchange systems.Preprint (1998).

  18. Kasuya, T., Yanase, A. & Takeda, T. Stability condition for the magnetic polaron in a magnetic semiconductor. Solid State Commun. 8, 1543–1546 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Singh, D. J. Magnetoelectronic effects in pyrochlore Tl2Mn2O7: role of Tl–O covalency. Phys. Rev. B 55, 313–316 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Ventura, C. I. & Alascio, B. Intermediate valence model for the colossal magnetoresistance in Tl2Mn2O7. Phys. Rev. B 56, 14533–14540 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Batlogg, B. Valence changes in TmSe by alloying with TmTe and EuSe. Phys. Rev. B 23, 650–663 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Schiffer, P., Ramirez, A. P., Bao, W. & Cheong, S.-W. Low-temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3. Phys. Rev. Lett. 75, 3336–3339 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Martinez, B. et al. Spin–disorder scattering and localization in magnetoresistive (La1−xYx)2/3Ca1/3MnO3perovskites. Phys. Rev. B 54, 10001–10007 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Haas, C., van Run, A. M. J. G., Bongers, P. F. & Albers, W. The magnetoresistance of n-type CdCr2Se4. Solid State Commun. 5, 657–661 (1967).

    Article  ADS  CAS  Google Scholar 

  25. Ramirez, A. P., Cava, R. J. & Krajewski, J. Colossal magnetoresistance in Cr-based chalcogenide spinels. Nature 386, 156–159 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Aeppli, B. Batlogg, H. Hwang, A. Millis and A. Ramirez for extensive discussions. Work done at Cambridge University was supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, P., Littlewood, P. Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors. Nature 395, 479–481 (1998). https://doi.org/10.1038/26703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26703

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing