Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plastic deformation of silicate spinel under the transition-zone conditions of the Earth's mantle

Abstract

The dynamics of the Earth's deep interior are controlled to a large extent by rheological properties1,2. Until recently, however, experimental studies on the rheological properties of materials thought to be present in the Earth's deep interior have been limited to relatively low pressures. Most previous estimates of rheology have therefore been based on either large extrapolations of low-pressure experimental data3,4 or inferences from geodynamical observations5,6,7. Such studies have provided only weak constraints on the complicated rheological structure expected in the transition zone of the Earth's mantle (between 410 and 660 km depth) where a series of phase transformations occur in silicate minerals8. Here we report the results of a direct experimental study of deformation, under transition-zone conditions, of the spinel phase of (Mg,Fe)2SiO4 (ringwoodite; thought to be present in the Earth's transition zone). Relatively coarse-grained samples show evidence of dislocation creep with dislocation structures similar to those observed in oxide and germanate spinels9,10, which have significantly higher creep strengths than olivine10,11. In contrast, a fine-grained sample shows evidence for grain-size-sensitive creep. These observations suggest that a ringwoodite-rich layer of the transition zone is likely to have a higher viscosity than the olivine-rich upper mantle3, whereas a subducting slab in the deep transition zone may lose its strength if significant grain-size reduction occurs12,13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A scanning electron micrograph of a deformed specimen (no.704).
Figure 2: Transmission electron micrographs of deformed ringwoodite.
Figure 3: Deformation conditions of the present study as compared with deformation mechanism boundaries constructed from the data for germanate spinels (Mg2GeO4 and Ni2GeO4)10,11,12.

Similar content being viewed by others

References

  1. Forte, A. M. & Woodward, R. L. in Earth's Deep Interior (ed. Crossley, D. J.) 337–404 (Overseas Publishers Assoc./Gordon & Breach, Amsterdam, 1997).

    Google Scholar 

  2. Bunge, H-P., Richards, M. A. & Baumgardner, J. R. The effect of viscosity stratification on mantle convection. Nature 379, 436–438 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Karato, S. Plasticity-crystal structure systematics in dense oxides and its implications for the creep strength of the Earth's deep interior: A preliminary result. Phys. Earth Planet. Inter. 55, 234–240 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Borch, R. S. & Green, H. W. I Dependence of creep in olivine on homologous temperature and its implication for flow in the mantle. Nature 330, 345–348 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Peltier, W. R. in Mantle Convection (ed. Peltier, W. R.) 389–478 (Gordon & Breach, New York, 1989).

    MATH  Google Scholar 

  6. Mitrovica, J. X. & Forte, A. M. Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. J. Geophys. Res. 102, 2751–2769 (1997).

    Article  ADS  Google Scholar 

  7. Kido, M. & Cadek, O. Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity. Earth Planet. Sci. Lett. 151, 125–137 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Duclos, R., Doukhan, N. & Escaig, B. High temperature creep behaviour of nearly stoichiometric alumina spinel. J. Mater. Sci. 13, 1740–1748 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Dupas-Bruzek, C., Green, H. W. II., Doukhan, N., Doukhan, J-C. & Tingle, T. N. The rheology of olivine and spinel magnesium germanate (Mg2GeO4): TEM study of the defect microstructures. Phys. Chem. Miner. (in the press).

  11. Lawlis, J. R., Zhao, Y. & Karato, S. High temperature creep of nickel germanate spinel. Eos 79, S331 (1998).

    Article  Google Scholar 

  12. Vaughan, P. J. & Coe, R. S. Creep mechanism in Mg2GeO4: effects of a phase transition. J. Geophys. Res. 86, 389–404 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Rubie, D. C. The olivine → spinel transformation and the rheology of subducting lithosphere. Nature 308, 505–508 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Riedel, M. R. & Karato, S. Grain-size evolution is subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet. Sci. Lett. 148, 27–44 (1997).

    Article  ADS  CAS  Google Scholar 

  15. van der Hilst, R. D., Engdahl, E. R., Spakman, W. & Nolet, G. Evidence for deep mantle circulation from global tomography. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  16. Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res. 97, 4809–4822 (1992).

    Article  ADS  Google Scholar 

  17. Zhou, H. Ahigh-resolution P wave model for the top 1200 km of the mantle. J. Geophys. Res. 101, 27791–27810 (1996).

    Article  ADS  Google Scholar 

  18. Machetel, P. & Weber, P. Intermittently layered convection in a model mantle with an endothermic phase-change at 670 km. Nature 350, 55–57 (1991).

    Article  ADS  Google Scholar 

  19. Peltier, W. R. & Solheim, L. P. Mantle phase-transitions and layered chaotic convection. Geophys. Res. Lett. 19, 321–324 (1992).

    Article  ADS  Google Scholar 

  20. Honda, S., Yuen, D. A., Balachandar, S. & Reuteler, D. 3-dimensional instabilities of mantle convection with multiple phase-transitions. Science 259, 1308–1311 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of an endothermic phase-transition at 670 km depth in a spherical model of mantle convection in the Earth's mantle. Nature 361, 699–704 (1993).

    Article  ADS  Google Scholar 

  22. Dupas, C., Doukhan, N., Doukhan, J-C., Green, H. W. I & Young, T. E. Analytical electron microscopy of a synthetic peridotite experimentally deformed in the β olivine stability field. J. Geophys. Res. 99, 15821–15832 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Dupas-Bruzek, C., Sharp, T. G., Rubie, D. C. & Durham, W. B. Mechanisms of transformation and deformation in Mg1.8Fe0.2SiO4olivine and wadsleyite under non-hydrostatic stress. Phys. Earth Planet. Inter. 108, 33–48 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Karato, S. & Rubie, D. C. Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation studies under high pressures and temperatures. J. Geophys. Res. 102, 20111–20122 (1997).

    Article  ADS  Google Scholar 

  25. Ohtani, E. & Kumazawa, M. Melting of forsterite Mg2SiO4up to 15 GPa. Phys. Earth Planet. Inter. 27, 32–38 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Katsura, T. & Ito, E. The system Mg2SiO4-Fe2SiO4at high pressure and temperature: precise determination of stabilities of olivine, modified spinel and spinel. J. Geophys. Res. 94, 15663–15670 (1989).

    Article  ADS  Google Scholar 

  27. Vaughan, P. J. & Kohlstedt, D. L. Cation stacking faults in magnesium germanate spinel. Phys. Chem. Mineral. 7, 241–245 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Ashby, M. F. & Verrall, R. A. Diffusion accommodated flow and superplasticity. Acta Metall. 21, 149–163 (1973).

    Article  CAS  Google Scholar 

  29. Karato, S. in Earth's Deep Interior (ed. Crossley, D.) 223–272 (Overseas Publishers Assoc./Gordon & Breach, Amsterdam, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank H. Jung, Z. Wang, H. Schulze, H. Küfner and K-H. Lee for technical assistance. This research was supported by grants from NSF, Alexander von Humboldt Stiftung, NATO and the EU “Human Capital and Mobility-Access to Large Scale Facilities” Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichiro Karato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karato, Si., Dupas-Bruzek, C. & Rubie, D. Plastic deformation of silicate spinel under the transition-zone conditions of the Earth's mantle. Nature 395, 266–269 (1998). https://doi.org/10.1038/26206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26206

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing