Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic evidence for a lower-mantle origin of the Iceland plume

Abstract

Iceland, one of the most thoroughly investigated hotspots1,2,3, is generally accepted to be the manifestation of an upwelling mantle plume4. Yet whether the plume originates from the lower mantle or from a convective instability at a thermal boundary layer between the upper and lower mantle near 660 km depth5,6 remains unconstrained. Tomographic inversions of body-wave delay times show that low seismic velocities extend to at least 400 km depth beneath central Iceland7,8, but cannot resolve structure at greater depth. Here we report lateral variations in the depths of compressional-to-shear wave conversions at the two seismic discontinuities marking the top and bottom of the mantle transition zone beneath Iceland. We find that the transition zone is 20 km thinner than in the average Earth9 beneath central and southern Iceland, but is of normal thickness beneath surrounding areas, a result indicative of a hot and narrow plume originating from the lower mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variations in the depths of the 410- and 660-km phase boundaries can distinguish three generalized, end-member models for mantle plumes, here depicted schematically.
Figure 2: The geometry of our experiment.
Figure 3: Images of P410s and P660s in stacked receiver functions and P660s-P410s differential times indicate an anomalously thin transition zone beneath central and southern Iceland. a, Locations of the profiles of receiver function stacks.
Figure 4: Map view of differences between the observed P660s-P410s differential times and the value predicted for the iasp91 model9 underscores the localized nature of the anomaly.

Similar content being viewed by others

References

  1. Schilling, J. G. Iceland mantle plume: Geochemical study of Reykjanes Ridge. Nature 242, 565–571 (1973).

    Article  ADS  CAS  Google Scholar 

  2. White, R. S., Brown, J. W. & Smallwood, J. R. The temperature of the Iceland plume and the origin of outward-propagating V-shaped ridges. J. Geol. Soc. Lond. 152, 1039–1045 (1995).

    Article  Google Scholar 

  3. Ribe, N. M., Christensen, U. R. & Theissing, J. The dynamics of plume-ridge interaction, 1: Ridge-centered plumes. Earth Planet. Sci. Lett. 134, 155–168 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  ADS  Google Scholar 

  5. Richter, F. M. & McKenzie, D. P. On some consequences and possible causes of layered mantle convection. J. Geophys. Res. 86, 6133–6142 (1981).

    Article  ADS  Google Scholar 

  6. Anderson, D. L. Hotspots, basalts and the evolution of the mantle. Science 213, 82–89 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Tryggvason, K., Husebye, E. S. & Stefánsson, R. Seismic image of the hypothesized Icelandic hot spot. Tectonophysics 100, 94–118 (1983).

    Article  ADS  Google Scholar 

  8. Wolfe, C. J., Bjarnason, I. Th., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Kennett, B. L. N. & Engdahl, E. R. Travel times for global earthquake location and phase identification. Geophys. J. Int. 105, 429–466 (1991).

    Article  ADS  Google Scholar 

  10. Nataf, H.-C. & VanDecar, J. Seismological detection of a mantle plume? Nature 364, 115–120 (1993).

    Article  ADS  Google Scholar 

  11. Liu, L.-G. in Earth: Its Origin, Structure and Evolution (ed McElhinny, M. W.) 177–202 (Academic, San Diego, (1979)).

    Google Scholar 

  12. Langston, C. A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J.Geophys. Res. 84, 4749–4762 (1979).

    Article  ADS  Google Scholar 

  13. Bjarnason, I. Th., Wolfe, C. J., Solomon, S. C. & Gudmundson, G. Initial results from the ICEMELT experiment: Body-wave delay times and shear-wave splitting across Iceland. Geophys. Res. Lett. 23, 459–462 (1996); Correction. Geophys. Res. Lett. 23, 903 (1996).

    Article  ADS  Google Scholar 

  14. Shen, Y., Solomon, S. C., Bjarnason, I. Th. & Purdy, G. M. Hot mantle transition zone beneath Iceland and the adjacent Mid-Atlantic Ridge inferred from P-to-S conversions at the 410- and 660-km discontinuities. Geophys. Res. Lett. 23, 3527–3530 (1996).

    Article  ADS  Google Scholar 

  15. Dueker, K. G. & Sheehan, A. F. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J. Geophys. Res. 102, 8313–8327 (1997).

    Article  ADS  Google Scholar 

  16. Kanasewich, E. R., Hemmings, C. D. & Alpaslan, T. Nth-root stack nonlinear multichannel filter. Geophysics 38, 327–338 (1973).

    Article  ADS  Google Scholar 

  17. Shearer, P. M. Transition zone gradients and the 520-km discontinuity. J. Geophys. Res. 101, 3053–3066 (1996).

    Article  ADS  Google Scholar 

  18. Bjarnason, I. Th., Silver, P. G. & Solomon, S. C. Teleseismic shear wave splitting near the Iceland hotspot: Results from ICEMELT (abstr.). Eos 78, S322 (1997).

    Google Scholar 

  19. Nakakuki, T., Sato, H. & Fujimoto, H. Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity. Earth Planet. Sci. Lett. 121, 369–384 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Kellogg, L. H. Interactions of plumes with a compositional boundary at 670 km. Geophys. Res. Lett. 18, 865–868 (1991).

    Article  ADS  Google Scholar 

  21. Olson, P., Schubert, G., Anderson, C. & Goldman, P. Plume formation and lithosphere erosion: Acomparison of laboratory and numerical experiments. J. Geophys. Res. 93, 15065–15084 (1988).

    Article  ADS  Google Scholar 

  22. Sleep, N. H. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  ADS  Google Scholar 

  23. Shen, Y., Sheehan, A. F., Dueker, K. G., de Groot-Hedlin, C. & Gilbert, H. Mantle discontinuity structure beneath the southern East Pacific Rise from P-to-S converted phases. Science 280, 1232–1235 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Lee, D.-K. & Grand, S. P. Depths of the upper mantle discontinuities beneath the East Pacific Rise. Geophys. Res. Lett. 23, 3369–3372 (1996).

    Article  ADS  Google Scholar 

  25. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Wicks, C. W. & Richards, M. A. Adetailed map of the 660-km discontinuity beneath the Izu-Bonin subduction zone. Science 261, 1424–1427 (1993).

    Article  ADS  Google Scholar 

  27. Niu, F. & Kawakatsu, H. Direct evidence for the undulation of the 660-km discontinuity beneath Tonga: Comparison of Japan and California array data. Geophys. Res. Lett. 22, 531–534 (1995).

    Article  ADS  Google Scholar 

  28. Zhong, S. & Gurnis, M. Role of plates and temperature-dependent viscosity in phase change dynamics. J. Geophys. Res. 99, 15903–15917 (1994).

    Article  ADS  Google Scholar 

  29. Bina, C. R. & Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853–15860 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Efron, B. & Gong, G. Aleisure look at the bootstrap, the jackknife, and cross-validation. Am. Stat. 37, 36–48 (1983).

    Google Scholar 

Download references

Acknowledgements

We thank Bjorn Bjarnason, Birgir Bjarnason, B. Brandsdóttir, H. Brynjlfósson, K.Egilsson, G. Gudmundson, E. Hannesson, T. Hardarson, L. Helgason, B. Ingimundarson, H. Jónsson, E. Kjartansson, A. Kuehnel, R. Kuehnel, P. Sigurdsson, R. Thrudmarsson, and the staff of the National Electric Company of Iceland (Landsvirkjun) for assistance with field operations; the IRIS-DMS for making available data from GSN station BORG; G. M. Purdy, D. W. Forsyth, R. S. Detrick, and J. A. Collins for encouragement and advice in the early stages of this work; S. van der Lee for providing software; D. E. James, E. M. Parmentier, I. S. Sacks, and P. G. Silver for discussions, and G. Helffrich and P. van Keken for reviews. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shen.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Solomon, S., Bjarnason, I. et al. Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395, 62–65 (1998). https://doi.org/10.1038/25714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25714

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing