Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The intensity of the Earth's magnetic field over the past 160 million years

Abstract

In contrast to our detailed knowledge of the directional behaviour of the Earth's magnetic field during geological and historical times1,2, data constraining the past intensity of the field remain relatively scarce. This is mainly due to the difficulty in obtaining reliable palaeointensity measurements, a problem that is intrinsic to the geological materials which record the Earth's magnetic field. Although the palaeointensity database has grown modestly over recent years3,4,5 these data are restricted to a few geographical locations and more than one-third of the data record the field over only the past 5?Myr—the most recent database5 covering the time interval from 5 to 160?Myr contains only about 100 palaeointensity measurements. Here we present 21 new data points from the interval 5–160?Myr obtained from submarine basalt glasses collected from locations throughout the world's oceans. Whereas previous estimates for the average dipole moment were comparable to that of the Earth's present field6, the new data suggest an average dipole moment of (4.2 ± 2.3) × 1022?A?m2, or approximately half the present magnetic-field intensity. This lower average value should provide an important constraint for future efforts to model the convective processes in the Earth's core which have been responsible for generating the magnetic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behaviour of magnetic remanence during the Thellier–Thellier experiments.
Figure 2: Summary of palaeointensity data for the past 160?Myr and NRM data from the DSDP/ODP basalts.

Similar content being viewed by others

References

  1. Opdyke, N. D. & Channell, J. E. T. Magnetic Stratigraphy (Academic, San Diego, (1996)).

  2. Merrill, R. T., McElhinny, M. W. & McFadden, P. L. Paleomagnetism, the Core, and the Deep Mantle (Academic, San Diego, (1996).

  3. McFadden, P. L. & McElhinny, M. W. Variations in the geomagnetic dipole 2: statistical analysis of VDM's for the past 5?m.y. J. Geomagn. Geoelectr. 34, 163–189 (1982).

    Article  ADS  Google Scholar 

  4. Tanaka, H., Kono, M. & Uchimura, H. Some global features of paleointensity in geological time. Geophys. J. Int. 120, 97–102 (1995).

    Article  ADS  Google Scholar 

  5. Perrin, M. & Shcherbakov, V. Paleointensity of the Earth's magnetic field for the past 400Ma: evidence for a dipole structure during the Mesozoic low. J. Geomagn. Geoelectr. 49, 601–614 (1997); data available by anonymous ftp at 〈ftp://ftp.ngdc.noaa.gov〉 (cited 17 July (1998)).

    Article  ADS  Google Scholar 

  6. Merrill, R. T. & McElhinny, M. W. The Earth's Magnetic Field (Academic, San Diego, (1983)).

  7. Pick, T. & Tauxe, L. Holocene paleointensities: Thellier experiments on submarine basaltic glass from the East Pacific Rise. J. Geophys. Res. 98, 17949–17964 (1993).

    Article  ADS  Google Scholar 

  8. Pick, T. & Tauxe, L. Characteristics of magnetite in submarine basaltic glass. Geophys. J. Int. 119, 116–128 (1994).

    Article  ADS  Google Scholar 

  9. Pick, T. & Tauxe, L. Geomagnetic paleointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature 366, 129–139 (1993).

    Article  Google Scholar 

  10. Thellier, E. & Thellier, O. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15, 285–378 (1959).

    Google Scholar 

  11. Coe, R. S., Grommé, S. & Mankinen, E. A. Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res. 83, 1740–1756 (1978).

    Article  ADS  Google Scholar 

  12. Kirschvink, J. L. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718 (1980).

    Article  ADS  Google Scholar 

  13. Van der Voo, R. Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans (Cambridge Univ. Press, (1993)).

  14. Steiner, M. B. Paleomagnetism of the Cretaceous section, Site 462. Init. Rep. DSDP 61, 711–716 (1981).

    ADS  Google Scholar 

  15. Clube, T. M. M., Creer, K. M. & Robertson, A. H. F. Paleorotation of the Troodos microplate, Cyprus. Nature 317, 522–525 (1985).

    Article  ADS  Google Scholar 

  16. Mueller, R. D., Royer, J.-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993).

    Article  ADS  Google Scholar 

  17. Lee, T.-Y. & Lawver, L. A. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251, 85–138 (1995).

    Article  ADS  Google Scholar 

  18. Gripp, A. & Gordon, R. Plate velocities relative to hot spots. Geophys. Res. Lett. 17, 1109–1112 (1990).

    Article  ADS  Google Scholar 

  19. Mejia, V., Opdyke, N. D. & Perfit, M. R. Paleomagnetic field intensity recorded in submarine basaltic glass from the East Pacific Rise, the last 69?ka. Geophys. Res. Lett. 23, 475–478 (1996).

    Article  ADS  Google Scholar 

  20. Prévot, M., Mankinen, E. A., Coe, R. S. & Grommé, C. S. The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models. J. Geophys. Res. 90, 10417–10448 (1985).

    Article  ADS  Google Scholar 

  21. Bleil, U. & Petersen, N. Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301, 384–388 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Prévot, M., Derder, M. E. M., McWilliams, M. & Thompson, J. Intensity of the Earth's magnetic field: evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett. 97, 129–139 (1990).

    Article  ADS  Google Scholar 

  23. Johnson, H. P. & Tivey, M. A. Magnetic properties of zero-age oceanic crust; a new submarine lava flow on the Juan de Fuca ridge. Geophys. Res. Lett. 22, 175–178 (1995).

    Article  ADS  Google Scholar 

  24. Kent, D. V. & Gee, J. Magnetic alteration of zero-age oceanic basalt. Geology 24, 703–706 (1996).

    Article  ADS  Google Scholar 

  25. Dunlop, D. J. & Özdemir, Ouml;. Rock Magnetism: Fundamentals and Frontiers (Cambridge Univ. Press (1997)).

    Book  Google Scholar 

  26. Raymond, C. & LaBrecque, J. L. Magnetization of the oceanic crust: thermoremanent magnetization or chemical remanent magnetization? J. Geophys. Res. 92, 8077–8088 (1987).

    Article  ADS  Google Scholar 

  27. Johnson, H. P. & Pariso, J. E. Variations in oceanic crustal magnetization: Systematic changes in the last 160 million years. J. Geophys. Res. 98, 435–445 (1994).

    Article  ADS  Google Scholar 

  28. Cande S. C. & Kent, D. V. Ultrahigh resolution marine magnetic anomaly profiles: a record of continuous paleointensity variations? J. Geophys. Res. 97, 15075–15083 (1992).

    Article  ADS  Google Scholar 

  29. Gee, J., Schneider, D. A. & Kent, D. V. Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth Planet. Sci. Lett. 144, 327–335 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Johnson, H. P., Vanpatten, D. & Sager, W. W. Age-dependent variation in the magnetization of seamounts. Geophys. Res. Lett. 22, 231–234 (1995).

    Article  ADS  Google Scholar 

  31. Tauxe, L. & Hartl, P. 11 million years of Oligocene geomagnetic field behaviour. Geophys. J. Int. 128, 217–229 (1996).

    Article  ADS  Google Scholar 

  32. Gee, J. & Kent, D. V. Magnetization of axial lavas from the southern East Pacific Rise (14 degrees–23 degrees S): Geochemical controls on magnetic properties. J. Geophys. Res. 10, 24873–24886 (1997).

    Article  ADS  Google Scholar 

  33. Castillo, P. R., Pringle, M. S. & Carlson, R. W. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume? Earth Planet. Sci. Lett. 123, 139–154 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Mukasa & Ludden Geology 15, 825 (1987).

    Google Scholar 

  35. Harland, W. B. et al. A Geologic Time Scale (Cambridge Univ. Press, (1989)).

  36. Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF and GOA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tauxe.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juárez, M., Tauxe, L., Gee, J. et al. The intensity of the Earth's magnetic field over the past 160 million years. Nature 394, 878–881 (1998). https://doi.org/10.1038/29746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29746

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing