Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain

Abstract

The discovery1 of high-temperature superconductivity in copper oxides raised the possibility that superconductivity could be achieved at room temperature. But since 1993, when a critical temperature (T c) of 133 K was observed in the HgBa2Ca2Cu3O8+δ (ref. 2), no further progress has been made in raising the critical temperature through material design. It has been shown, however, that the application of hydrostatic pressure can raise T c — up to 164 K in the case of HgBa2Ca2Cu3O8+δ (ref. 3). Here we show, by analysing the uniaxial strain and pressure derivatives of T c, that compressive epitaxial strain in thin films of copper oxide superconductors could in principle generate much larger increases in the critical temperature than obtained by comparable hydrostatic pressures. We demonstrate the experimental feasibility of this approach for the compound La1.9Sr0.1CuO4, where we obtain a critical temperature of 49 K in strained single-crystal thin films — roughly double the bulk value of 25 K. Furthermore, the resistive behaviour at low temperatures (but above T c) of the strained samples changes markedly, going from insulating to metallic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extrapolated in-plane lattice parameters as a function of temperature.
Figure 2: Measured X-ray diffraction pattern of the 12-unit-cell-thick ‘214’ film on SLAO.
Figure 3: Cross-section, high-resolution electron-microscopy image of the ‘214’ film on SLAO.
Figure 4: Resistivity versus temperature for the two films grown simultaneously and for the bulk x = 0.10 sample26.

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible high T csuperconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 362, 56–58 (1993).

    Article  ADS  Google Scholar 

  3. Gao, L.et al. Superconductivity up to 164 K in HgBa2Cam −1CumO2 m +2+δ(m = 1, 2 and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Bud'ko, S. L., Guimpel, J., Nakamura, O., Maple, M. B. & Schuller, I. K. Uniaxial pressure dependence of the superconducting critical temperature in RBa2Cu3O7−δ high T coxides. Phys. Rev. B 46, 1257–1260 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Belenky, G. L.et al. Effect of stress along the ab plane on the J c and T cof YBa2Cu3O7thin films. Phys. Rev. B 44, 10117–10120 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Sato, H. & Naito, M. Increase in the superconducting transition temperature by anisotropic strain effect in (001) La1.85Sr0.15CuO4thin films on LaSrAlO4substrates. Physica C 274, 221–226 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Locquet, J.-P. & Williams, E. J. Epitaxially induced defects in Sr- and O-doped La2CuO4thin films grown by MBE: implications for transport properties. Acta Polonica A 92, 69–84 (1997).

    Article  CAS  Google Scholar 

  8. Nohara, M.et al. Unconventional lattice stiffening in superconducting La2− xSrxCuO4single crystals. Phys. Rev. B 52, 570–580 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Gugenberger, F.et al. Uniaxial pressure dependence of T c from high resolution dilatometry of untwinned La2− xSrxCuO4single crystals. Phys. Rev. B 49, 13137–13142 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Welp, U.et al. Effect of uniaxial stress on the superconducting transition in YBa2Cu3O7. Phys. Rev. Lett. 69, 2130–2133 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Meingast, C.et al. Large ab anisotropy of the expansivity anomaly at T cin untwinned YBa2Cu7−δ. Phys. Rev. Lett. 67, 1634–1637 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Meingast, C., Junod, A. & Walker, E. Superconducting fluctuations and uniaxial pressure dependence of T cof a Bi2Sr2CaCu2O8+ xsingle crystal from high resolution thermal expansion. Physica C 272, 106–114 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Fukamachi, K.et al. in Advances in Superconductivity Vol. VII (eds Yamafuji, K. & Morishita, T.) 225–228 (Springer, Tokyo, (1995)).

    MATH  Google Scholar 

  14. Chen, X., Tessema, G. X. & Skove, M. J. Effects of elastic stress on the resistivity and T cof (Bi,Pb)2Sr2Can −1CunOx. Physica C 181, 340–344 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Tanahashi, N.et al. The strontium content dependence of pressure effect in (La1− xSrx)2CuO4. Jpn J. Appl. Phys. 28, L762–L765 (1989).

    Article  CAS  Google Scholar 

  16. Yamada, N. & Ido, M. Pressure effects on superconductivity and structural phase transitions in La2− xMxCuO4(M = Ba, Sr). Physica C 203, 240–246 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Fartash, A., Grimsditch, M., Fullerton, E. E. & Schuller, IvanK. Breakdown of Poisson's effect in Nb/Cu superlattices. Phys. Rev. B 47, 12813–12819 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Locquet, J.-P. & Mächler, E. Block-by-block deposition of complex oxide films. Mater. Res. Soc. Bull. 19, 39–43 (1994).

    Article  CAS  Google Scholar 

  19. Triscone, J.-M.et al. YBa2Cu3O7/PrBa2Cu3O7superlattices: Properties of ultrathin superconducting layers separated by insulating layers. Phys. Rev. Lett. 64, 804–807 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Terashima, T.et al. Superconductivity of one-unit-cell thick YBa2Cu3O7thin film. Phys. Rev. Lett. 67, 1362–1365 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. J. Cryst. Growth 27, 118–125 (1994).

    ADS  Google Scholar 

  22. Locquet, J.-P.et al. Variation of the in-plane penetration depth λab as a function of doping in La2− xSrxCuO4±δthin films on SrTiO3: implications for the overdoped state. Phys. Rev. B 54, 7481–7488 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Tresse, F. Cristallochimie de Quelques Oxides des Éléments de Transition: Influence de la présence d'oxygène et de Substitutions Cationiques sur la Supraconduction Thesis, Univ. Bordeaux (1990).

    Google Scholar 

  24. Hojczyk, R., Jia, C.-L., Poppe, U. & Urban, K. New insulating materials for high T csuperconductor device applications. Physica C 282–287;, 731–732 (1997).

    Article  ADS  Google Scholar 

  25. Radaelli, P. G.et al. Structural and superconducting properties of La2− xSrxCuO4 as a function of Sr content. Phys. Rev. B 49, 4163–4175 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Fullerton, E. E., Schuller, I. K., Vanderstraeten, H. & Bruynseraede, Y. Structural refinements from x-ray diffraction. Phys. Rev. B 45, 9292–9310 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Kimura, T.et al. In-plane and out-of-plane magnetoresistance in La2− xSrxCuO4single crystals. Phys. Rev. B 53, 8733–8742 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Nakano, T.et al. Magnetic properties and electronic conduction of superconducting La2− xSrxCuO4. Phys. Rev. B 49, 16000–16008 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Williams, G. V. M., Tallon, J. L., Haines, E. M., Michalak, R. & Dupree, R. NMR evidence for a d-wave normal state pseudogap. Phys. Rev. Lett. 78, 721–724 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Anderson, P. W. The Theory of Superconductivity in the High TcCuprate Superconductors (Princeton Univ. Press, (1997)); C-axis electrodynamics as evidence for the interlayer theory of high temperature superconductivity. Science 279, 1196–1198 (1998).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Jaccard, F. Arrouy and E. J. Williams for contributions in the initial phase of this project; P. Martinoli, Ø. Fischer, J.-M. Triscone, J. G. Bednorz and C. Rossel for discussions; and C. Voisard and T. Maeder for the thermal expansion measurements. This work was supported by the Swiss National Science Foundation, the Swiss Priority Project “Minast”, and the Belgian UIAP 4/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Locquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locquet, JP., Perret, J., Fompeyrine, J. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998). https://doi.org/10.1038/28810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28810

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing