Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of hydrothermal megaplumes by cooling of pillow basalts at mid-ocean ridges

Abstract

Hydrothermal megaplumes are huge volumes of anomalously warm water that are located up to 1,000 metres above the sea floor and appear to be generated at mid-ocean ridges. Since their discovery in 1986, there has been considerable debate concerning their origin. A theoretical model is used to argue that the cooling of pillow basalts, which are erupted at 1,200 °C into sea water and are the most common form of submarine volcanic activity, is responsible for the megaplume formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cartoon illustrating assumptions used in model calculations.
Figure 2

Similar content being viewed by others

References

  1. Baker, E. T., German, C. R. & Elderfield, H. in Seafloor Hydrothermal Systems (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 47–71 (Geophys. Monogr. 91, Am. Geophys. Union, Washington DC, (1995)).

    Google Scholar 

  2. Baker, E. T., Lavelle, J. W., Feely, R. A., Massoth, G. J. & Walker, S. L. Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. J. Geophys. Res. 94, 9237–9250 (1989).

    Article  ADS  Google Scholar 

  3. Cann, J. R. & Strens, M. R. Modelling periodic megaplume emission by black smoker systems. J. Geophys. Res. 94, 12227–12237 (1989).

    Article  ADS  Google Scholar 

  4. Cathles, L. M. Acapless 350 °C flow zone model to explain megaplumes, salinity variations, and high temperature veins in ridge axis hydrothermal systems. Econ. Geol. 88, 1977–1988 (1993).

    Article  Google Scholar 

  5. Wilcock, W. S. D. Amodel for the formation of transient event plumes above mid-ocean ridge hydrothermal systems. J. Geophys. Res. 102, 12109–12121 (1997).

    Article  ADS  Google Scholar 

  6. Lowell, R. P. & Germanovich, L. N. Dike injection and the formation of megaplumes at ocean ridges. Science 267, 1804–1807 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Baker, E. T., Massoth, G. J. & Feely, R. A. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329, 149–151 (1987).

    Article  ADS  Google Scholar 

  8. Lavelle, J. W. & Baker, E. T. Anumerical study of local convection in the benthic ocean induced by episodic hydrothermal discharges. J. Geophys. Res. 99, 16065–16080 (1994).

    Article  ADS  Google Scholar 

  9. Nojiri, Y., Ishibashi, J., Kawai, T., Otsuki, A. & Sakai, H. Hydrothermal plumes along the North Fiji Basin spreading axis. Nature 342, 667–670 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Gamo, T. et al. Hydrothermal plumes in the eastern Manus Basin, Bismark Sea: CH4, Mn, Al and pH. Deep-Sea Res. 40, 2335–2349 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Baker, E. T. et al. Hydrothermal event plumes from the CoAxial seafloor eruption site, Juan de Fuca Ridge. Geophys. Res. Lett. 22, 147–150 (1995).

    Article  ADS  Google Scholar 

  12. Butterfield, D. A. et al. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A 355, 369–386 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Chadwick, W. W. & Embley, R. W. Lava flows from a mid-1980s submarine eruption on the Cleft segment, Juan de Fuca Ridge. J. Geophys. Res. 99, 4761–4776 (1994).

    Article  ADS  Google Scholar 

  14. Rosenberg, N. D., Spera, F. J. & Haymon, R. M. The relationship between flow and permeability field in seafloor hydrothermal systems. Earth Planet. Sci. Lett. 116, 135–153 (1993).

    Article  ADS  Google Scholar 

  15. Höskuldsson, A. & Sparks, R. S. J. Thermodynamics and fluid dynamics of effusive subglacial eruptions. Bull. Volcanol. 59, 219–230 (1997).

    Article  ADS  Google Scholar 

  16. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids 2nd edn (Oxford Univ. Press, (1959)).

    Google Scholar 

  17. Turcotte, D. L. & Schubert, G. Geodynamics, Applications of Continuum Physics to Geological Problems (Wiley, New York, (1982)).

    Google Scholar 

  18. Huppert, H. E. & Sparks, R. S. J. Melting of a chamber containing a hot turbulently convecting fluid. J. Fluid Mech. 188, 107–131 (1988).

    Article  ADS  Google Scholar 

  19. Walker, G. P. L. Morphometric study of pillow-size spectrum among pillow lavas. Bull. Volcanol. 54, 459–474 (1992).

    Article  ADS  Google Scholar 

  20. Embley, R. W., Chadwich, W., Perfit, M. R. & Baker, E. T. Geology of the northern Cleft segment, Juan de Fuca Ridge: Recent lava flows, sea-floor spreading and the formation of megaplumes. Geology 19, 771–775 (1991).

    Article  ADS  Google Scholar 

  21. Thórarinsson, S. On the rate of lava and tephra production and the upward migration of magma in four Icelandic eruptions. Geol. Rundsch. 57, 705–718 (1967).

    Article  ADS  Google Scholar 

  22. Griffiths, R. W. & Fink, J. H. Solidification and morphology of submarine lavas: a dependence on extrusion rate. J. Geophys. Res. 97, 19729–19737 (1992).

    Article  ADS  Google Scholar 

  23. Tritton, D. J. Physical Fluid Mechanics (Clarendon, Oxford, (1988)).

    Google Scholar 

  24. Boubnov, B. M. & Van Heijst, G. J. F. Experiments on convection from a horizontal plate with and without background rotation. Exp. Fluids 16, 155–164 (1994).

    Article  Google Scholar 

  25. Helfrich, K. R. & Speer, K. G. in Seafloor Hydrothermal Systems (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 347–356 (Geophys. Monogr. 91, Am. Geophys. Union, Washington DC, (1995)).

    Google Scholar 

  26. Woods, A. W. & Bush, J. W. M. The dimensions and dynamics of megaplumes. J. Geophys. Res. (submitted).

  27. Massoth, G. J. et al. Temporal and spatial variability of hydrothermal manganese and iron at Cleft segment, Juan de Fuca Ridge. J. Geophys. Res. 99, 4905–4923 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Seyfried, W. E. & Mottl, M. J. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochim. Cosmochim. Acta 46, 985–1002 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Rosenbauer, R. J. & Bischoff, J. L. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A., Boström, K., Laubier, L. & Smith, K. L.) 177–197 (Plenum, New York, (1983)).

    Book  Google Scholar 

  30. Von Damm, K. L. & Bischoff, J. L. Chemistry of hydrothermal solutions from the Southern Juan de Fuca Ridge. J. Geophys. Res. 92, 11334–11346 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Chadwick, W. W., Embley, R. W. & Fox, C. G. SeaBeam depth changes associated with recent lava flows, CoAxial segment, Juan de Fuca Ridge: Evidence for multiple eruptions between 1981–1993. Geophys. Res. Lett. 22, 167–170 (1995).

    Article  ADS  Google Scholar 

  32. Massoth, G. J. et al. Observations of manganese and iron at the CoAxial seafloor eruption site, Juan de Fuca Ridge. Geophys. Res. Lett. 22, 151–154 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Lupton, J. E. et al. Variations in water column 3He/heat ratios associated with the 1993 CoAxial event, Juan de Fuca Ridge. Geophys. Res. Lett. 22, 155–158 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Baker, E. T. A6-year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge. J. Geophys. Res. 99, 4889–4904 (1994).

    Article  ADS  Google Scholar 

  35. Bratt, S. R. & Purdy, G. M. Structure and variability of oceanic crust on the flanks of the East Pacific Rise between 11° and 13° N. J. Geophys. Res. 89, 6111–6125 (1984).

    Article  ADS  Google Scholar 

  36. Williams, D. L. & Von Herzen, R. P. Heat loss from the Earth: new estimate. Geology 2, 327–328 (1974).

    Article  ADS  Google Scholar 

  37. Stein, C. A., Stein, S. & Pelayo, A. M. in Seafloor Hydrothermal Systems (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 425–445 (Geophys. Monogr. 91, Am. Geophys. Union, Washington DC, (1995)).

    Google Scholar 

  38. Speer, K. G. Thermocline penetration by buoyant plumes. Phil. Trans. R. Soc. Lond. A 355, 443–458 (1995).

    Article  ADS  Google Scholar 

  39. Emanuel, K. A., Speer, K., Rotunno, R., Srivastava, R. & Molina, M. Hypercanes: A possible link in global extinction scenarios. J. Geophys. Res. 100, 13755–13765 (1995).

    Article  ADS  Google Scholar 

  40. MacLeod, K. G. & Huber, B. T. Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature 380, 422–425 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Vogt, . R. Volcanogenic upwelling of anoxic, nutrient-rich water: a possible factor in carbonate-bank/reef demise and benthic faunal extinctions. Geol. Soc. Am. Bull. 101, 1225–1245 (1989).

    Article  ADS  CAS  Google Scholar 

  42. Kim, S. L., Mullineaux, L. S. & Helfrich, K. R. Larval dispersal via entrainment into hydrothermal vent plumes. J. Geophys. Res. 99, 12655–12665 (1994).

    Article  ADS  Google Scholar 

  43. Mullineaux, L. S. & France, S. C. in Seafloor Hydrothermal Systems (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 408–424 (Geophys. Monogr. 91, Am. Geophys. Union, Washington DC, (1995)).

    Google Scholar 

  44. Rudnicki, M. D. & Elderfield, H. Theory applied to the mid-Atlantic hydrothermal plumes: the finite difference approach. J. Volcanol. Geotherm. Res. 50, 161–172 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Sparks, R. James and A. Woods at Bristol for their help and advice, and K. Speer and B. Boubnov for comments on the manuscript. Hydrothermal research at Bristol is supported by NERC grants from the BRIDGE programme. G.G.J.E. also thanks the ‘Foundation Belge de la Vocation’ for previous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, M., Ernst, G. Generation of hydrothermal megaplumes by cooling of pillow basalts at mid-ocean ridges. Nature 393, 643–647 (1998). https://doi.org/10.1038/31397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31397

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing