Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Host–guest encapsulation of materials by assembled virus protein cages

Abstract

Self-assembled cage structures of nanometre dimensions can be used as constrained environments for the preparation of nanostructured materials1,2 and the encapsulation of guest molecules3, with potential applications in drug delivery4 and catalysis5. In synthetic systems the number of subunits contributing to cage structures is typically rather small3,6. But the protein coats of viruses (virions) commonly comprise hundreds of subunits that self-assemble into a cage for transporting viral nucleic acids. Many virions, moreover, can undergo reversible structural changes that open or close gated pores to allow switchable access to their interior7. Here we show that such a virion — that of the cowpea chlorotic mottle virus — can be used as a host for the synthesis of materials. We report the mineralization of two polyoxometalate species (paratungstate and decavanadate) and the encapsulation of an anionic polymer inside this virion, controlled by pH-dependent gating of the virion's pores. The diversity in size and shape of such virus particles make this a versatile strategy for materials synthesis and molecular entrapment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo electron microscopy and image reconstruction of the cowpea chlorotic mottle virus (CCMV).
Figure 2: Schematic illustration of the synthetic approach for mineralization within the virus particle.
Figure 3: TEM images of paratungstate-mineralized virus particles after isolation by centrifugation on a sucrose gradient.
Figure 4: High-resolution TEM image of a corner of an individual paratungstate core, encapsulated within the virion.
Figure 5: Encapsulation of polyanetholesulphonic acid (PAS) within the CCMV virion.

References

  1. Mann, S. Biomimetic Materials Chemistry (VCH, New York, 1996).

    Google Scholar 

  2. Stucky, G. D. & MacDougall, J. E. Quantum confinement and host/guest chemistry: Probing a new dimension. Science 247, 669–678 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Rebek, J. J. Assembly and encapsulation with self complementary molecules. Chem. Soc. Rev. 25, 255–264 (1996).

    Article  CAS  Google Scholar 

  4. Park, K. Controlled Drug Delivery: Challenges and Strategies (Am. Chem. Soc., Washington DC, 1997).

    Google Scholar 

  5. Kang, J. & Rebek, J. J. Acceleration of a Diels-Alder reaction by a self-assembled molecular capsule. Nature 385, 50–52 (1997).

    Article  ADS  CAS  Google Scholar 

  6. MacGillivray, L. R. & Atwood, J. L. Achiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Speir, J. A., Munshi, S., Wang, G., Baker, T. S. & Johnson, J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3, 63–78 (1995).

    Article  CAS  Google Scholar 

  8. Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S. & Young, M. J. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207, 486–494 (1995).

    Article  CAS  Google Scholar 

  9. van der Graaf, M., van Mierlo, C. P. M. & Hemminga, M. A. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR. Biochemistry 30, 5722–5727 (1991).

    Article  CAS  Google Scholar 

  10. Misono, M. in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (eds Pope, M. T. & Müller, A.) 255–266 (Kluwer Academic, Dordrecht, 1994).

    Book  Google Scholar 

  11. Sarafianos, S. G., Kortz, U., Pope, M. T. & Modak, M. J. Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: an analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft. Biochem. J. 319, 619–626 (1996).

    Article  CAS  Google Scholar 

  12. Belford, D. A., Hendry, I. A. & Parish, C. R. Investigation of the ability of several naturally occurring and synthetic polyanions to bind to and potentiate the biological activity of acidic fibroblast growth factor. J. Cell Physiol. 157, 184–189 (1993).

    Article  CAS  Google Scholar 

  13. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Meldrum, F. C., Heywood, B. R. & Mann, S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 257, 522–523 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Douglas, T. in Biomimetic Approaches in Materials Science (ed. Mann, S.) 91–115 (VCH, New York, 1996).

    Google Scholar 

  16. Johnson, J. E. & Speir, J. Quasi-equivalent viruses: A paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997).

    Article  CAS  Google Scholar 

  17. Chiu, W., Burnett, R. & Garcea, R. Structural Biology of Viruses (Oxford Univ. Press, 1997).

    Google Scholar 

  18. Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358–1365 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Namba, K., Pattanayek, R. & Stubbs, G. Visualization of protein-nucleic acid interactions in a virus; Refinement of intact tobacco mosaic virus structure at 2.9 Å resolution by fiber diffraction. J. Mol. Biol. 208, 307–325 (1989).

    Article  CAS  Google Scholar 

  20. Bancroft, J. B., Wagner, G. W. & Bracket, C. E. The self-assembly of a nucleic-acid free pseudo-top component for a small spherical virus. Virology 36, 146–149 (1968).

    Article  CAS  Google Scholar 

  21. Houk, K. N., Nakamura, K., Sheu, C. & Keating, A. E. Gating as a control element in constrictive binding and guest release by hemicarcerands. Science 273, 627–629 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Pope, M. T. Heteropoly and Isopoly Oxometalates (Springer, Heidelberg, 1983).

    Book  Google Scholar 

  23. Evans, H. T. & Prince, E. Location of internal hydrogen atoms in the paradocecatungstate polyanion by neutron diffraction. J. Am. Chem. Soc. 105, 4838–4839 (1983).

    Article  CAS  Google Scholar 

  24. d'Amour, H. & Allman, R. Die kristallstruktur des dinatrium-oktammonium-parawolframat-dodekahydrats, Na2(NH4)8[H2W12O42]·12H2O. Z. Kristallogr. 138, 5–18 (1972).

    Article  Google Scholar 

  25. Powder Diffraction File 20-1176(Joint Committee on Powder Diffraction Standards, Swarthmore, PA).

  26. Johnson, G. K. & Murmann, R. K. Sodium and ammonium decavanadates (V). Inorg. Synth. 19, 140–145 (1979).

    CAS  Google Scholar 

  27. Heywood, B. R. & Mann, S. Template directed nucleation and growth of inorganic materials. Adv. Mater. 6, 9–20 (1994).

    Article  CAS  Google Scholar 

  28. Sherman, J. C. & Cram, D. J. Carcerand interiors provide a new phase of matter. J. Am. Chem. Soc. 111, 4527–4528 (1989).

    Article  CAS  Google Scholar 

  29. Lawson, D. M.et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Smith, A. E. Viral vectors in gene therapy. Annu. Rev. Microbiol. 49, 807–838 (1995).

    Article  CAS  Google Scholar 

  31. Fox, J. M., Zhao, X., Speir, J. A. & Young, M. J. Analysis of a salt stable mutant of cowpea chlorotic mottle virus. Virology 222, 115–122 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Brumfield, D. Mogk and G. Myer for experimental assistance, and R.Lakis for assistance with the electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trevor Douglas or Mark Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, T., Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998). https://doi.org/10.1038/30211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30211

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing