Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sniffing and smelling: separate subsystems in the human olfactory cortex

Abstract

The sensation and perception of smell (olfaction) are largely dependent on sniffing, which is an active stage of stimulus transport and therefore an integral component of mammalian olfaction1,2. Electrophysiological data obtained from study of the hedgehog, rat, rabbit, dog and monkey indicate that sniffing (whether or not an odorant is present) induces an oscillation of activity in the olfactory bulb, driving the piriform cortex in the temporal lobe, in other words, the piriform is driven by the olfactory bulb at the frequency of sniffing3,4,5,6. Here we use functional magnetic resonance imaging (fMRI) that is dependent on the level of oxygen in the blood to determine whether sniffing can induce activation in the piriform of humans, and whether this activation can be differentiated from activation induced by an odorant. We find that sniffing, whether odorant is present or absent, induces activation primarily in the piriform cortex of the temporal lobe and in the medial and posterior orbito-frontal gyri of the frontal lobe. The source of the sniff-induced activation is the somatosensory stimulation that is induced by air flow through the nostrils. In contrast, a smell, regardless of sniffing, induces activation mainly in the lateral and anterior orbito-frontal gyri of the frontal lobe. The dissociation between regions activated by olfactory exploration (sniffing) and regions activated by olfactory content (smell) shows a distinction in brain organization in terms of human olfaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain regions activated by sniffing and smelling.
Figure 2: Fourier transform of activity within the temporal piriform during four different scans in the same subject.
Figure 3: The component of sniffing that activates the piriform.
Figure 4: The dissociation between sniff-induced and odour-induced activity can be seen within the same subject at the same time (during the same scan).

Similar content being viewed by others

References

  1. Le Magnen, J. Etude des facteurs dynamiques de l'excitation olfactive. L'Année Psychologique 77–89 (1945–1946 ).

  2. Laing, D. G. Natural sniffing gives optimum odor perception for humans. Perception 12, 99–117 ( 1983).

    Article  CAS  Google Scholar 

  3. Adrian, E. D. Olfactory reactions in the brain of the hedgehog. J. Physiol. 100, 459–473 (1942).

    Article  CAS  Google Scholar 

  4. Bressler, S. L. & Freeman, W. J. Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electro. Clin. Neurophysiol. 50, 19–24 (1980).

    Article  CAS  Google Scholar 

  5. Bressler, S. L. Relation of olfactory bulb and cortex. II. Model for driving of cortex by bulb. Brain Res. 409, 294– 301 (1987).

    Article  CAS  Google Scholar 

  6. Ueki, S. & Domino, E. F. Some evidence for a mechanical receptor in olfactory function. J. Neurophysiol. 24 , 12–25 (1961).

    Article  CAS  Google Scholar 

  7. Jones, A. S., Lancer, J. M., Shone, G. R. & Stevens, J. C. The effect of lignocaine on nasal resistance and nasal sensation of airflow. Acta Otolaryngol. (Stockh.) 101, 328– 330.

  8. Doty, R. L., Shaman, P. & Dann, M. Development of the University of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol. Behav. 32, 489–502 (1984).

    Article  CAS  Google Scholar 

  9. Jones, A. S., Wight, R. G., Crosher, R. & Durham, L. H. Nasal sensation of airflow following blockade of the nasal trigeminal afferents. Clin. Otolaryngol. 14, 285– 289 (1989).

    Article  CAS  Google Scholar 

  10. Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Price, J. L. in The Human Nervous System (ed. Paxinos, G.) 979– 1001 (Academic, San Diego, 1990).

    Book  Google Scholar 

  12. Price, J. L.et al. in Olfaction, a Model System for Computational Neuroscience (eds Davis, J. L. & Eichenbaum, H.) 101– 120 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  13. Zatorre, R. J. & Jones-Gotman, M. Right-nostril advantage for discrimination of odors. Percept. Psychophys. 47, 526–531 (1990).

    Article  CAS  Google Scholar 

  14. Zatorre, R. J. & Jones-Gotman, M. Human olfactory discrimination after unilateral frontal or temporal lobectomy. Brain 114, 71–84 ( 1991).

    Article  Google Scholar 

  15. Zatorre, R. J., Jones-Gotman, M., Evans, A. C. & Meyer, E. Functional localization and lateralization of human olfactory cortex. Nature 360, 339–341 ( 1992).

    Article  ADS  CAS  Google Scholar 

  16. Jones-Gotman, M. & Zatorre, R. J. Olfactory identification deficits in patients with focal cerebral excision. Neuropsychologia 26, 387–400 ( 1988).

    Article  CAS  Google Scholar 

  17. Allison, A. C. The secondary olfactory areas in the human brain. J. Anat. 88, 481–488 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Potter, H. & Nauta, W. J. H. Anote on the problem of olfactory associations of the orbitofrontal cortex in the monkey. Neuroscience 4, 361–367 ( 1979).

    Article  CAS  Google Scholar 

  19. Von Bonin, G. & Green, J. R. Connections between orbital cortex and the diencephalon in the macaque. J. Comp. Neurol. 92, 243–254 (1949).

    Article  Google Scholar 

  20. Eslinger, P. J., Damasio, A. R. & Van Hoesen, G. W. Olfactory dysfunction in man: anatomical and behavioral aspects. Brain Cognit. 1, 259– 285 (1982).

    Article  CAS  Google Scholar 

  21. Elian, M. Olfactory impairment in motor neuron disease: a pilot study. J. Neurol. Neurosurg. Psychiatr. 54, 927– 928 (1991).

    Article  CAS  Google Scholar 

  22. Doty, R. L., Deems, D. A. & Stellar, S. Olfactory dysfunction in Parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38, 1237–1244 (1988).

    Article  CAS  Google Scholar 

  23. Doty, R. L.et al. Olfactory dysfunction in three neurodegenerative diseases. Geriatrics 46 suppl 1, 47–51 (1991).

    CAS  PubMed  Google Scholar 

  24. Potter, H. & Butters, N. An assessment of olfactory deficits in patients with damage to prefrontal cortex. Neuropsychologia 18, 621–628 ( 1980).

    Article  CAS  Google Scholar 

  25. Henkin, R. I., Comiter, H., Fedio, P. & O'Doherty, D. Defects in taste and smell recognition following temporal lobectomy. Trans. Am. Neurol. Assoc. 102, 146–150 (1977).

    CAS  PubMed  Google Scholar 

  26. Sobel, N.et al. Amethod for functional magnetic resonance imaging of olfaction. J. Neurosci. Methods 78, 115– 121 (1997).

    Article  CAS  Google Scholar 

  27. Glover, G. H. & Lai, S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med. 39((1998).

  28. Friston, K. J., Jezzard, P. & Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1, 153–171 (1994).

    Article  Google Scholar 

  29. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  30. Desmond, J. E. & Lim, K. O. On- and offline Talairach registration for structural and functional MRI studies. Hum. Brain Mapp. 5, 58–73 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stanford Program in Neuroscience (S.G.F.), Phil & Allen Trust, NIAAA, & NIMH. We thank L. Stryer, B. Wandell, D. Heeger, A. Pfefferbaum, G. Boynton, J.Demb, D. Peterson, G. Heit and J. Wine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobel, N., Prabhakaran, V., Desmond, J. et al. Sniffing and smelling: separate subsystems in the human olfactory cortex . Nature 392, 282–286 (1998). https://doi.org/10.1038/32654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32654

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing