Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunnelling and zero-point motion in high-pressure ice

Abstract

The microscopic structure of ice poses a long-standing challenge to theory1,2,3. Because of their low mass, the protons in the hydrogen bonds that define the structures of crystalline ice are susceptible to quantum-mechanical effects such as tunnelling1,4,5,6,7,8. High pressure provides a means of controlling the length of the hydrogen bonds in order to investigate such effects. In particular, Holzapfel predicted 26 years ago that, under pressure, hydrogen bonds might be transformed from the highly asymmetric O–H···O configuration to a symmetric state in which the proton lies midway between the two oxygens9, leading to a non-molecular symmetric phase of ice, now denoted as ice ‘X’. The existence of this phase has been inferred from spectroscopy10,11,12,13,14, but has still not been observed directly. Here we investigate the role of quantum effects in proton ordering and hydrogen-bond symmetrization within ice at high pressure by using a simulation technique that treats both electrons and nuclei quantum-mechanically15,16,17. We find that the proton-ordered structure at low pressure, with asymmetric hydrogen bonds (ice VIII), transforms on increasing pressure to a proton-disordered asymmetric phase (ice VII) owing to translational proton tunnelling. On further compression, the zero-point fluctuations lead to strongly delocalized protons and hydrogen-bond symmetrization, even though the underlying character of the proton-transfer potential remains a double well. Only at still higher pressures does the double-well potential become transformed into a single well, whereupon the protons again become increasingly localized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiferroelectric staggered order parameter D as a function of the molar volume V.
Figure 2: Evolution of the average oxygen–hydrogen bond length ROH as a function of the average oxygen–oxygen distance ROO.
Figure 3: Proton symmetrization as a function of shortening of the hydrogen bond.
Figure 4: Evolution of the average spread of the quantum protons RH as a function of the molar volume V at 100 K.

Similar content being viewed by others

References

  1. Bernal, J. D. & Fowler, R. H. Atheory of water and ionic solutions, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    Article  ADS  CAS  Google Scholar 

  2. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  CAS  Google Scholar 

  3. Bjerrum, N. Structure and properties of ice. Science 115, 385–390 (1952).

    Article  ADS  CAS  Google Scholar 

  4. Schweizer, K. S. & Stillinger, F. H. High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs. J. Chem. Phys. 80, 1230–1240 (1984).

    Article  ADS  CAS  Google Scholar 

  5. McMahon, M. I.et al. Geometric effects of deuteration on hydrogen-ordering phase transitions. Nature 348, 317–319 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Krumhansl, J. A. Sorting chickens from eggs. Nature 348, 285–286 (1990).

    Article  ADS  Google Scholar 

  7. Lee, C., Vanderbilt, D., Laasonen, K., Car, R. & Parrinello, M. Ab initio studies on high pressure phases of ice. Phys. Rev. Lett. 69, 462–465 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Lee, C., Vanderbilt, D., Laasonen, K., Car, R. & Parrinello, M. Ab initio studies on the structural and dynamical properties of ice. Phys. Rev. B 47, 4863–4872 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Holzapfel, W. B. On the symmetry of the hydrogen bonds in ice VII. J. Chem. Phys. 56, 712–715 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Pruzan, P., Chervin, J. C. & Canny, B. Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature. J. Chem. Phys. 99, 9842–9846 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Pruzan, P. Pressure effects on the hydrogen bond in ice up to 80 GPa. J. Mol. Struct. 322, 279–286 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Goncharov, A. F., Struzhkin, V. V., Somayazulu, M. S., Hemley, R. J. & Mao, H. K. Compression of ice to 210 Gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase. Science 273, 218–220 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Aoki, K., Yamawaki, H., Sakashita, M. & Fujihisa, H. Infrared absorption study of the hydrogen-bond symmetrization in ice to 100 GPa. Phys. Rev. B 54, 15673–15677 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Struzhkin, V. V., Goncharov, A. F., Hemley, R. J. & Mao, H.-k. Cascading Fermi resonances and the soft mode in dense ice. Phys. Rev. Lett. 78, 4446–4449 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Marx, D. & Parrinello, M. Ab initio path-integral molecular dynamics. Z. Phys. B (Rapid Note) 95, 143–144 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Marx, D. & Parrinello, M. Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys. 104, 4077–4082 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. Efficient and general algorithms for path integral Car–Parrinello molecular dyanamics. J. Chem. Phys. 104, 5579–5588 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Hobbs, P. V. Ice Physics (Clarendon Press, Oxford, 1974).

    Google Scholar 

  19. Nelmes, R. J.et al. Neutron diffraction study of the structure of deuterated ice VIII to 10 GPa. Phys. Rev. Lett. 71, 1192–1195 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Aoki, K., Yamawaki, H. & Sakashita, M. Pressure-tuned Fermi Resonance in ice VII. Science 268, 1322–1324 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Aoki, K., Yamawaki, H. & Sakashita, M. Observation of Fano interference in high-pressure ice VII. Phys. Rev. Lett. 76, 784–786 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Hama, J. & Suito, K. Evidence of a new phase of ice above 70 GPa from the analysis of experimental data using the universal equation of state. Phys. Lett. A 187, 346–350 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Pruzan, P.et al. Raman scattering and X-ray diffraction of ice in the Megabar range. Occurrence of a symmetric disordered solid above 62 GPa. J. Phys. Chem. B 101, 6230–6233 (1997).

    Article  CAS  Google Scholar 

  24. Wolanin, E.et al. Equation of state of ice VII up to 106 GPa. Phys. Rev. B 56, 5781–5785 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Ceperley, D. M. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Hemley, R. J.et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330, 737–740 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Nelmes, R. J., Loveday, J. S., Marshall, W. G., Besson, J. M., Klotz, S. & Hamel, G. Structures of ice VII and ice VIII to 20 GPa. Proceedings of the International Conference on High Pressure Science and Technology (Joint Conference: AIRAPT-16 & HPCJ-38)(Kyoto, August 25–29, 1997).

  29. Chandler, D. & Leung, K. Excess electrons in liquids, geometrical perspectives. Annu. Rev. Phys. Chem. 45, 557–591 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Štich, I., Marx, D., Parrinello, M. & Terakura, K. Proton-induced plasticity of hydrogen clusters. Phys. Rev. Lett. 78, 3669–3672 (1997).

    Article  ADS  Google Scholar 

  31. Becke, A. D. Density–functional exchange–energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  ADS  CAS  Google Scholar 

  33. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Our warm thanks to M. Tuckerman, J. Hutter, U. Schwarz, M. Bernasconi and S.Klotz for useful discussions. The simulations were carried out on the IBM SP2 at CNUSC (Montpellier) and at MPI Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Marx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature 392, 258–261 (1998). https://doi.org/10.1038/32609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32609

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing