Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene)

Abstract

The nature of the charge carriers in ‘conducting’ polymers is of considerable interest at present1,2, largely on the basis of the technological potential of these materials for use as the semiconducting layer in field-effect transistors (FETs) and the emissive layer in light-emitting diodes3 (LEDs). One of the main outstanding questions concerns the relative importance of intra- versus inter-chain charge transfer in determining the overall rate of charge transport. Here we apply the pulse-radiolysis time-resolved microwave conductivity technique4 to dilute solutions of a soluble dialkoxy derivative of the semiconducting polymer poly(phenylene vinylene), PPV, by which means we determine the one-dimensional intra-chain mobilities of electrons and holes on isolated polymer chains free from inter-chain interactions. The values so obtained—0.5 and 0.2 cm2 V−1 s−1 respectively—are considerably larger than the mobilities measured previously for bulk PPV-based materials5,6,7,8,9. This suggests that considerable improvement in the performance characteristics (in particular switching time and maximum current) of organic FET and LED devices should be possible if material purity and structural order can be better controlled.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microwave conductivity transients observed on 5-ns pulsed ionization of benzene solutions.

Similar content being viewed by others

References

  1. Conwell, E. M. in Handbook of Organic Conductive Molecules and Polymers (ed. Nalwa, H. S.) 1–45 (Wiley, New York, (1997)).

    Google Scholar 

  2. Epstein, A. J. Electrically conducting polymers: science and technology. Mater. Res. Soc. Bull. 22(6), 16–24 ((1997).

    Article  Google Scholar 

  3. Yang, Y. Polymer electroluminescent devices. Mater. Res. Soc. Bull. 22(6), 31–38 ((1997).

    Article  Google Scholar 

  4. Infelta, P. P., de Haas, M. P. & Warman, J. M. The study of the transient conductivity of pulse irradiated dielectric liquids on a nanosecond timescale using microwaves. Radiat. Phys. Chem. 10, 353–365 (1977).

    ADS  CAS  Google Scholar 

  5. Meyer, H., Haarer, D., Naarmann, H. & Hörhold, H. H. Trap distribution for charge carriers in poly(paraphenylene vinylene) (PPV) and its substituted derivative DPOP-PPV. Phys. Rev. B 52, 2587–2598 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Kryukov, A. Y., Saidov, A. C. & Vannikov, A. C. Charge carrier transport in poly(phenylene vinylene) films. Thin Solid Films 209, 84–91 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Gailberger, M. & Bässler, H. DC and transient photoconductivity of poly(2-phenyl-1,4-phenylenevinylene). Phys. Rev. B 44, 8643–8651 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Blom, P. W. M., de Jong, M. J. M. & Vleggaar, J. J. M. Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308–3310 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Pichler, K., Jarrett, C. P., Friend, R. H., Ratier, B. & Moliton, A. Field-effect transistors based on poly(p-phenylene vinylene) doped by ion implantation. J. Appl. Phys. 77, 3523–3527 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Peeters, E., Delmotte, A., Janssen, R. A. J. & Meijer, E. W. Chiroptical properties of poly{2,5-bis(S)-methylbutoxy]-1,4-phenylene vinylene}. Adv. Mater. 9, 493–496 (1997).

    Article  CAS  Google Scholar 

  11. Gelinck, G. H., Warman, J. M. & Staring, E. G. J. Polaron pair formation, migration and decay on photoexcited poly(phenylenevinylene) chains. J. Phys. Chem. 100, 5485–5491 (1996).

    Article  CAS  Google Scholar 

  12. Schmidt, W. F. & Allen, A. O. Free-ion yields in sundry irradiated liquids. J. Chem. Phys. 52, 2345–2350 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Gee, N. & Freeman, G. R. Electron thermalization distances and free-ion yields in dense gaseous and liquid benzene. Can, J. Chem. 70, 1618–1622 (1992).

    Article  CAS  Google Scholar 

  14. Itoh, K. & Holroyd, R. Effect of pressure on the electron mobility in liquid benzene and toluene. J. Phys. Chem. 94, 8850–8854 (1990).

    Article  CAS  Google Scholar 

  15. Meyers, F., Heeger, A. J. & Brédas, J.-L. Fine tuning of the band gap in conjugated polymers via control of block copolymer sequences. J. Chem. Phys. 97, 2750–2758 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Ionisation Potentials, Appearance Potentials and Heats of Formation of gaseous Positive Ions (NSRDS-NBS Rep. No. 26, US Govt Printing Office, Washington DC, (1969)).

  17. Inokuchi, Y. et al. Formation of benzene dimer cations in neat liquid benzene studied by femtosecond transient absorption spectroscopy. Chem. Phys. Lett. 269, 298–304 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Karl, N. in Landolt-Börnstein, New Series, Group III Vol. 17,Semiconductors Subvol. i (Springer, Berlin,(1985)).

    Google Scholar 

  19. Tans, S. J. et al. Individual single-wall nanotubes as quantum wires. Nature 386, 474–477 (1996).

    Article  ADS  Google Scholar 

  20. Hilt, O. & Siebbeles, L. D. A. Time and frequency dependent charge carrier mobility of one-dimensional chains with energetic disorder. Chem. Phys. Lett. 269, 257–262 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Shen, Y. Q., Lindenberger, H., Bleier, H. & Roth, S. in Electronic Properties of Conjugated Polymers III (eds Kuzmany, H., Mehring, M. & Roth, S.) 96–99 (Springer, Berlin,(1989)).

    Book  Google Scholar 

  22. Bradley, D. D. C., Shen, Y. Q., Bleier, H. & Ruth, S. Transient photoconductivity in highly oriented poly(p-phenylenevinylene). J. Phys. C 21, L515–L522 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Lee, C. H., Yu, G., Moses, D. & Heeger, A. J. Picosecond transient photoconductivity in poly(p-phenylenevinylene). Phys. Rev. B 49, 2396–2407 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Antoniadis, H., Abkowitz, M. A. & Hsieh, B. R. Carrier deep-trapping mobility-lifetime products in poly(p-phenylenevinylene). Appl. Phys. Lett. 65, 2030–2032 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. H. Hwang and A. B. Holmes (Melville Laboratory for Polymer Synthesis, Cambridge, UK) for supplying MEH-PPV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs P. de Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoofman, R., de Haas, M., Siebbeles, L. et al. Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature 392, 54–56 (1998). https://doi.org/10.1038/32118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing