Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional ferroelectric films

Abstract

Ultrathin crystalline films offer the possibility of exploring phase transitions in the crossover region between two and three dimensions. Second-order ferromagnetic phase transitions have been observed in monolayer magnetic films1,2, where surface anisotropy energy stabilizes the two-dimensional ferromagnetic state at finite temperature3. Similarly, a number of magnetic materials have magnetic surface layers that show a second-order ferromagnetic–paramagnetic phase transition with an increased Curie temperature4. Ferroelectricity is in many ways analogous to ferromagnetism, and bulk-like ferroelectricity and finite-size modifications of it have been seen in nanocrystals as small as 250 Å in diameter5, in perovskite films 100 Å thick6 and in crystalline ferroelectric polymers as thin as 25 Å (7-10). But these results can be interpreted as bulk ferroelectricity suppressed by surface depolarization energies, and imply that the bulk transition has a minimum critical size11,12,13. Here we report measurements of the ferroelectric transition in crystalline films of a random copolymer of vinylidene fluoride and trifluoroethylene just 10 Å (two monolayers) thick. We see a first-order ferroelectric phase transition with a transition temperature nearly equal to the bulk value, even in these almost two-dimensional films. In addition, we see a second first-order transition at a lower temperature, which seems to be associated with the surface layers only. The near-absence of finite-size effects on the bulk transition implies that these films must be considered as two-dimensional ferroelectrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the polymer chains and films.
Figure 2: Dielectric properties of the FLP films.
Figure 3: Pyroelectric response and spontaneous polarization Ps, obtained by integration over temperature, of P(VDF-TrFE 70:30) films.
Figure 4: Polarization hysteresis loops at 25 °C, measured by the pyroelectric technique, of the P(VDF-TrFE 70:30) films with different thicknesses.

Similar content being viewed by others

References

  1. Dürr, W.et al. Magnetic phase transition in two-dimensional ultrathin Fe films on Au(100). Phys. Rev. Lett. 62, 206–209 (1989).

    Article  ADS  Google Scholar 

  2. Farle, M. & Baberschke, K. Ferromagnetic order and the critical exponent γ for a Gd monolayer: an electron-spin-resonance study. Phys. Rev. Lett. 58, 511–514 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  ADS  CAS  Google Scholar 

  4. Dowben, P. A., McIlroy, D. N. & Li, D. in Handbook on the Physics and Chemistry of Rare Earths (eds Gschneidner, K. A. Jr & Eyring, L.) Ch. 159 (Elsevier, Amsterdam, 1997).

    Google Scholar 

  5. Ishikawa, K., Yoshikawa, K. & Okada, N. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852–5855 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Karasawa, J., Sugiura, M., Wada, M., Hafid, M. & Fukami, T. Ultra-thin lead titanate films prepared by tripole magnetron sputtering. Integrat. Ferroelectr. Lett. 12, 105–114 (1996).

    Article  CAS  Google Scholar 

  7. Palto, S.et al. Ferroelectric Langmuir-Blodgett films. Ferroelectr. Lett. 19, 65–68 (1995).

    Article  CAS  Google Scholar 

  8. Bune, A.et al. Novel switching phenomena in ferroelectric Langmuir-Blodgett films. Appl. Phys. Lett. 67, 3975–3977 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Blinov, L. M., Fridkin, V. M., Palto, S. P., Sorokin, A. V. & Yudin, S. G. Thickness dependence of switching for ferroelectric Langmuir films. Thin Solid Films 284–285;, 474–476 (1996).

    Article  Google Scholar 

  10. Sorokin, A., Palto, S., Blinov, L., Fridkin, V. & Yudin, S. Ultrathin ferroelectric Langmuir-Blodgett films. Mol. Mater. 6, 61–67 (1996).

    CAS  Google Scholar 

  11. Scott, J. F. Phase transitions in ferroelectric thin films. Phase Trans. 30, 107–110 (1991).

    Article  CAS  Google Scholar 

  12. Tilley, D. R. in Ferroelectric Thin Films: Synthesis and Basic Properties (eds Paz de Araujo, C., Scott, J. F. & Taylor, G. F.) 11–45 (Gordon & Breach, New York, 1996).

    Google Scholar 

  13. Scott, J. F. Properties of ceramic KNO3 thin film memories. Physica B 150, 160–167 (1988).

    Article  CAS  Google Scholar 

  14. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Wang, T. T., Herbert, J. M. & Glass, A. M. (eds) The Applications of Ferroelectric Polymers (Chapman & Hall, New York, 1988).

    Google Scholar 

  16. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).

    Article  CAS  Google Scholar 

  17. Legrand, J. F. Structure and ferroelectric properties of P(VDF-TrFE) copolymers. Ferroelectrics 91, 303–317 (1989).

    Article  CAS  Google Scholar 

  18. Kimura, K. & Ohigashi, H. Polarization behavior in vinylidene fluoride-trifluroethylene copolymer thin films. Jpn J. Appl. Phys. 25, 383–387 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Ducharme, S.et al. Critical point in ferroelectric Langmuir-Blodgett polymer films. Phys. Rev. B 57, 25–28 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Allenspach, R. & Bishof, A. Magnetization direction switching in Fe/Cu(110) epitaxial films: temperature and thickness dependence. Phys. Rev. Lett. 69, 3385–3388 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Qu, B. D., Zhang, P. L., Wang, Y. G., Wang, C. L. & Zhong, W. L. Dielectric susceptibility of ferroelectric thin films. Ferroelectrics 152, 219–224 (1994).

    Article  Google Scholar 

  22. Yamamoto, T. Calculated size dependence of ferroelectric properties in PbZrO3-PbTiO3 system. Integr. Ferroelectr. 12, 161–166 (1996).

    Article  CAS  Google Scholar 

  23. Wang, C. L., Zhong, W. L. & Zhang, P. L. The Curie temperature of ultra-thin ferroelectric films. J. Phys.: Cond. Matter 3, 4743–4749 (1992).

    ADS  Google Scholar 

  24. Blinov, L. M. Langmuir films. Sov. Phys. Usp. 31, 623–644 (1988).

    Article  ADS  Google Scholar 

  25. Palto, S.et al. Ferroelectric Langmuir-Blodgett films showing bistable switching. Europhys. Lett. 34, 465–469 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Zhang, R. & Taylor, P. L. Theory of ferroelectric-paraelectric transitions in VF2/F4E random copolymers. J. Appl. Phys. 73, 1395–1402 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. A. Dowben and J. F. Scott for suggestions for improving the manuscript. Work at the University of Nebraska was supported by the USA NSF Division of Electronic and Communications Systems and by the Nebraska Research Initiative through the Center for Materials Research and Analysis. Work at the Institute of Crystallography was supported by INTAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Ducharme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bune, A., Fridkin, V., Ducharme, S. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998). https://doi.org/10.1038/36069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing