Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7

Abstract

The pocket domain of the retinoblastoma (Rb) tumour suppressor is central to Rb function, and is frequently inactivated by the binding of the human papilloma virus E7 oncoprotein in cervical cancer. The crystal structure of the Rb pocket bound to a nine-residue E7 peptide containing the LxCxE motif, shared by other Rb-binding viral and cellular proteins, shows that the LxCxE peptide binds a highly conserved groove on the B-box portion of the pocket; the A-box portion appears to be required for the stable folding of the B box. Also highly conserved is the extensive A–B interface, suggesting that it may be an additional protein-binding site. The A and B boxes each contain the cyclin-fold structural motif, with the LxCxE-binding site on the B-box cyclin fold being similar to a Cdk2-binding site of cyclin A and to a TBP-binding site of TFIIB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The A–B pocket is central to Rb function.
Figure 2: Conserved residues of the Rb pocket map to the LxCxE binding site or to the A–B interface, as well as to the hydrophobic cores of the A and B boxes.
Figure 3: The A–B interface is like a folded structural domain, and is highly conserved.
Figure 4: The E7 LxCxE binds as an extended peptide onto a conserved groove of the B box.
Figure 5: Rb, cyclin A and TFIIB use a common feature of their structurally conserved cyclin folds to bind their target proteins.

Similar content being viewed by others

References

  1. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  2. Yandell, D. W. et al. Oncogenic point mutations in the human retinoblastoma gene: their application to genetic counseling. New Engl. J. Med. 321, 1689–1695 (1989).

    Article  CAS  Google Scholar 

  3. Horowotiz, J. M. et al. Point mutational inactivation of the retinoblastoma antioncogene. Science 243, 937–940 (1989).

    Article  ADS  Google Scholar 

  4. Kaye, F. J., Kratzke, R. A., Ferster, J. L. & Horowitz, J. M. Asingle amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc. Natl Acad. Sci. USA 87, 6922–6926 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Onadim, Z., Hogg, A., Baird, P. N. & Cowell, J. K. Oncogenic point mutations in exon 20 of the RB1 gene in families showing incomplete penetrance and mild expression of the retinoblastoma phenotype. Proc. Natl Acad. Sci. USA 89, 6177–6181 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  ADS  CAS  Google Scholar 

  7. zur Hausen, H. Papillomavirus infections: a major cause of human cancers. Biochim. Biophys. Acta 1288, f55–f58 (1996).

    PubMed  Google Scholar 

  8. Bookstein, R., Shew, J. Y., Chen, P. L., Scully, P. & Lee, W. H. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247, 712–715 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Huang, H. J. et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242, 1563–1566 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Qin, X. Q., Chittenden, T., Livingston, D. M. & Kaelin, W. G. J Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    Article  CAS  Google Scholar 

  11. Goodrich, D. W., Wang, N. P., Qian, Y. W., Lee, E. Y. & Lee, W. H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67, 293–302 (1991).

    Article  CAS  Google Scholar 

  12. Hinds, P. W. et al. Regulation of the retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006 (1992).

    Article  CAS  Google Scholar 

  13. Buchkovich, K., Duffy, L. A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58, 1097–1105 (1989).

    Article  CAS  Google Scholar 

  14. Helin, K. et al. AcDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 33–50 (1992).

    Article  Google Scholar 

  15. Kaelin, W. G. J et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364 (1992).

    Article  CAS  Google Scholar 

  16. Hiebert, S. W., Chellappan, S. P., Horowitz, J. M. & Nevins, J. R. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes. Dev. 6, 177–185 (1992).

    Article  CAS  Google Scholar 

  17. Flemington, E. K., Speck, S. H. & Kaelin, W. G. J E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA 90, 6914–6918 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol. 13, 6501–6508 (1993).

    Article  CAS  Google Scholar 

  19. Weintraub, S. J. et al. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812–815 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Sellers, W. R., Rodgers, J. W. & Kaelin, W. G. J Apotent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl Acad. Sci. USA 92, 11544–11548 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Herber, R., Liem, A., Pitot, H. & Lambert, P. F. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70, 1873–1881 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chellappan, S. et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl Acad. Sci. USA 89, 4549–4553 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105 (1989).

    Article  CAS  Google Scholar 

  24. DeCaprio, J. A. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    Article  CAS  Google Scholar 

  25. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the advenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Gulliver, G. A., Herber, R. L., Liem, A. & Lambert, P. F. Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice. J. Virol. 71, 5905–5914 (1977).

    Google Scholar 

  27. Shan, B., Durfee, T. & Lee, W. H. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis. Proc. Natl Acad. Sci. USA 93, 679–684 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Hu, Q. J., Dyson, N. & Harlow, E. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. EMBO J. 9, 1147–1155 (1990).

    Article  CAS  Google Scholar 

  29. Kaelin, W. G. J, Ewen, M. E. & Livingston, D. M. Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Mol. Cell. Biol. 10, 3761–3769 (1990).

    Article  CAS  Google Scholar 

  30. Huang, S., Wang, N. P., Tseng, B. Y., Lee, W. H. & Lee, E. H. Two distinct and frequently mutated regions of retinoblastoma protein are required for binding to SV40 T antigen. EMBO J. 9, 1815–1822 (1990).

    Article  CAS  Google Scholar 

  31. Jones, R. E. et al. Identification of HPV-16 E7 peptides that are potent antagonists of E7 binding to the retinoblastoma suppressor protein. J. Biol. Chem. 265, 12782–12785 (1990).

    CAS  PubMed  Google Scholar 

  32. Chow, K. N. & Dean, D. C. Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol. Cell. Biol. 16, 4862–4868 (1996).

    Article  CAS  Google Scholar 

  33. Kim, H. Y. & Cho, Y. Structural similarity between the pocket region of retinoblastoma tumour suppressor and the cyclin-box. Nature Struct. Biol. 4, 390–395 (1997).

    Article  CAS  Google Scholar 

  34. Gibson, T. J., Thompson, J. D., Blocker, A. & Kouzarides, T. Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107. Nucleic Acids Res. 22, 946–952 (1994).

    Article  CAS  Google Scholar 

  35. Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320 (1995).

    Article  ADS  CAS  Google Scholar 

  36. Nikolov, D. B. et al. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377, 119–128 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Grafi, G. et al. Amaize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl Acad. Sci. USA 93, 8962–8967 (1996).

    Article  ADS  CAS  Google Scholar 

  38. Dyson, N., Buchkovich, K., Whyte, P. & Harlow, E. The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58, 249–255 (1989).

    Article  CAS  Google Scholar 

  39. Kratzke, R. A. et al. Partial inactivation of the RB product in a family with incomplete penetrance of familial retinoblastoma and benign retinal tumors. Oncogene 9, 1321–1326 (1994).

    CAS  PubMed  Google Scholar 

  40. Kitagawa, M. et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15, 7060–7069 (1996).

    Article  CAS  Google Scholar 

  41. Knudsen, E. S. & Wang, J. Y. J. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271, 8313–8320 (1996).

    Article  CAS  Google Scholar 

  42. O'Connor, R. J. & Hearing, P. Mutually exclusive interaction of the adenovirus E4-6/7 protein and the retinoblastoma gene product with internal domains of E2F-1 and DP-1. J. Virol. 68, 6848–6862 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, E. W., Clemens, K. E., Heck, D. V. & Munger, K. The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J. Virol. 67, 2402–2407 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda, M. A. & Nevins, J. R. Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol. Cell. Biol. 13, 7029–7035 (1993).

    Article  CAS  Google Scholar 

  45. Fattaey, A. R., Harlow, E. & Helin, K. Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes. Mol. Cell. Biol. 13, 7267–7277 (1993).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project B. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  47. Jones, T. A., Zhou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of erros in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  48. Brunger, A. T. X-PLOR, a System for Crystallography and NMR(Yale Univ. Press, New Haven, CT, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank S. Geromanos and H. Erdjument-Bromage of the Sloan-Kettering Microchemistry Facility for N-terminal sequence and mass spectroscopic analyses; M. Ewen, T. D. Gilmore, W. Harper, M. H. Lee and J. Y. J.Wang for cDNA clones; and C. Ogata of the National Synchrotron Light Source X4A beam line and the staff of the Cornell High Energy Synchrotron Source MacChess for help with data collection. This work was supported by the NIH, the Howard Hughes Medical Institute, the Pew Charitable Trusts, the Arnold and Mabel Beckman Foundation, the Dewitt Wallace Foundation and the Samuel and May Rudin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola P. Pavletich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JO., Russo, A. & Pavletich, N. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865 (1998). https://doi.org/10.1038/36038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36038

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing