Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dax1 antagonizes Sry action in mammalian sex determination

Abstract

DAX1, which encodes an unusual member of the nuclear hormone-receptor superfamily, is a gene that may be responsible for a sex-reversal syndrome in humans, referred to as dosage-sensitive sex reversal, in which XY individuals carrying duplications of Xp21, part of the small arm of the X chromosome, develop as females. XY mice carrying extra copies of mouse Dax1 as a transgene show delayed testis development when the gene is expressed at high levels, but do not normally show sex reversal. Complete sex reversal occurs, however, when the transgene is tested against weak alleles of the sex-determining Y-chromosome gene Sry. These results show that DAX1 is largely, if not solely, responsible for dosage-sensitive sex reversal and provide a model for early events in mammalian sex determination, when precise levels and timing of gene expression are critical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of genital-ridge markers.
Figure 2: Expression of the Dax:lacZ transgene in gonad development.
Figure 3: Delay in testis development of XX Dax:Sry transgenic gonads.
Figure 4: Expression of Dax:Dax transgene in the genital ridge.
Figure 5: Effect of the Dax:Dax transgene on testis development.
Figure 6: Effect of the Dax:Dax line 1812 transgene on the XYPOS Sry allele.
Figure 7: Effect of Dax:Dax transgene on Dax:Sry.

Similar content being viewed by others

References

  1. Gubbay, J. et al. Agene mapping ot the sex determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Sinclair, A. H. et al. Agene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Koopman, P. et al. Male development of chromsomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Hacker, A., Capel, B., Goodfellow, P. & Lovell-Badge, R. Expression of Sry, the mouse sex determining gene. Development 121, 1603–1614 (1995).

    CAS  PubMed  Google Scholar 

  5. Jeske, Y. W., Bowles, J., Greenfield, A. & Koopman, P. Expression of a linear Sry transcript in the mouse genital ridge. Nature Genet. 10, 480–482 (1995).

    Article  CAS  Google Scholar 

  6. Palmer, S. & Burgoyne, P. S. In situ analysis of fetal, prepuberal and adult XX-XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112, 265–268 (1991).

    CAS  PubMed  Google Scholar 

  7. McLaren, A. Development of the mammalian gonad: the fate of the supporting cell lineage. BioEssays 13, 151–156 (1991).

    Article  CAS  Google Scholar 

  8. Harley, V. R. et al. DNA binding activity of recombinant SRY from normal males and XY females. Science 255, 453–456 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hawkins, J. R. Sex determination. Hum. Mol. Genet. 3, 1463–1467 (1994).

    Article  CAS  Google Scholar 

  10. Whitfield, S., Lovell-Badge, R. & Goodfellow, P. N. Rapid sequence evolution of the sex determining gene SRY. Nature 364, 713–715 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Tucker, P. K. & Lundrigan, B. L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364, 715–717 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Pontiggia, A. et al. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J. 13, 5115–6124 (1994).

    Article  Google Scholar 

  13. Capel, B. & Lovell-Badge, R. in Advances in Developmental Biology Vol. 2 (ed. P. Wassarman) 1–35 (JAI, (1993).

    Google Scholar 

  14. da Silva, S. et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genet. 14, 62–68 (1996).

    Article  Google Scholar 

  15. Kent, J. et al. Amale-specific role for Sox9 in vertebrate sex determination. Development 122, 2813–2822 (1996).

    CAS  PubMed  Google Scholar 

  16. Bardoni, B. et al. Adosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature Genet. 7, 497–501 (1994).

    Article  CAS  Google Scholar 

  17. Dabovic, B. et al. Afamily of rapidly evolving genes from the sex reversal critical region in Xp21. Mamm. Genome 6, 571–580 (1995).

    Article  CAS  Google Scholar 

  18. Zanaria, E. et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Muscatelli, F. et al. Mutations in the DAX-1 gene gives rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Swain, A. et al. Mouse Dax-1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nature Genet. 12, 404–409 (1996).

    Article  CAS  Google Scholar 

  21. Ikeda, Y. et al. Steroidegenic factor 1 and Dax-1 co-localize in multiple cell lineages: potential links in endocrine development. Mol. Endocrinol. 10, 1261–1272 (1996).

    CAS  PubMed  Google Scholar 

  22. Guo, W., Burris, T. P. & McCabe, E. R. Expresison of Dax-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism in the hypothalamic-pituitary-adrenal/gonadal axis. Biochem. Mol. Med. 56, 8–13 (1995).

    Article  CAS  Google Scholar 

  23. Lovell-Badge, R. & Hacker, A. The molecular genetics of Sry and its role in mammalian sex determination. Phil. Trans. R. Soc. Lond. B 350, 205–214 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Munsterberg, A. & Lovell-Badge, R. Expression of the mouse anti-Mullerian hormone gene suggests a role in both male and female sexual differentiation. Development 113, 613–624 (1991).

    CAS  PubMed  Google Scholar 

  25. Tamai, K. T. et al. Hormonal and developmental regulation of Dax1 expression in Sertoli cells. Mol. Endocrinol. 10, 1561–1569 (1996).

    CAS  PubMed  Google Scholar 

  26. Smith, R. L., Geller, A. L., Escudero, K. W. & Wilcox, C. L. Long-term expression in sensory neurons in tissue culture of herpes simplex virus type1 (HSV-1) promoters in an HSV-1-derived vector. J. Virol. 69, 4593–4599 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lovell-Badge, R. Transgenic Modification of Germline and Somatic Cells: Examples from Animals and Plants. Phil. Trans. R. Soc. Lond. B 339, 159–164 (1993).

    Google Scholar 

  28. Eicher, E. M., Shown, E. P. & Washburn, L. L. Sex reversal in C57BL/6J-YPOS mice corrected by a Sry transgene. Phil. Trans. R. Soc. Lond. B 350, 263–269 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Eicher, E. M., Washburn, L. L., Whitney, B. I & Morrow, K. E. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217, 535–537 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Palmer, S. J. & Burgoyne, P. S. The Mus musculus domesticus Tdy allele acts later than the Mus musculus musculus Tdy allele: a basis for XY sex-reversal in C57BL/6-YPOS mice. Development 113, 709–714 (1991).

    CAS  PubMed  Google Scholar 

  31. Lovell-Badge, R. & Robertson, E. XY female mice resulting from a heritable mutation in the primary testis determining gene, Tdy. Development 109, 635–646 (1990).

    CAS  PubMed  Google Scholar 

  32. Eicher, E. M. et al. Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6-YPOS sex reversal. Nature Genet. 14, 206–209 (1996).

    Article  CAS  Google Scholar 

  33. Capel, B. et al. Deletion of Y chromosome sequences located outside the testis determining region can cause XY female sex reversal. Nature Genet. 5, 301–307 (1993).

    Article  CAS  Google Scholar 

  34. Clepet, C. et al. The human SRY transcript. Hum. Mol. Genet. 2, 2007–2012 (1993).

    Article  CAS  Google Scholar 

  35. Dubin, R. A. & Ostrer, H. SRY is a transcriptional activator. Mol. Endocrinol. 8, 1182–1192 (1994).

    CAS  PubMed  Google Scholar 

  36. Poulat, F. et al. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J. Biol. Chem. 272, 7167–7172 (1997).

    Article  CAS  Google Scholar 

  37. Coward, P. et al. Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6 YDom sex reversal. Nature Genet. 6, 245–250 (1994).

    Article  CAS  Google Scholar 

  38. Graves, J. A. M. The evolution of mammalian sex chromosomes and the origin of sex determining genes. Phil. Trans. R. Soc. Lond. B 350, 305–312 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Renfree, M., Harry, J. L. & Shaw, G. The marsupial male: a role model for sexual development. Phil. Trans. R. Soc. Lond. B 350, 243–251 (1995).

    Article  ADS  CAS  Google Scholar 

  40. Pask, A. et al. The candidate sex-reversing DAX1 gene is autosomal in marsupials: implications for the evolution of sex determination in mammals. Genomics 41, 422–426 (1997).

    Article  CAS  Google Scholar 

  41. Foster, J. W. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY related gene. Nature 372, 525–530 (1994).

    Article  ADS  CAS  Google Scholar 

  42. Wagner, T. et al. Autosomal sex reversal campomelic dysplasia are caused by mutations in and around the SRY related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  Google Scholar 

  43. Kwok, C. et al. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal. Am. J. Hum. Genet. 57, 1028–1036 (1995).

  44. Ito, M., Yu, R. & Jameson, J. L. DAX-1 inhibits SF-1 mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol. Cell. Biol. 17, 1476–1483 (1997).

    Article  CAS  Google Scholar 

  45. Shen, W. et al. Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 77, 651–661 (1994).

    Article  Google Scholar 

  46. Ikeda, Y. et al. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hybroxylase gene expression. Mol. Endrocrinol. 7, 852–860 (1993).

    CAS  Google Scholar 

  47. Honda, S.-I. et al. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J. Biol. Chem. 268, 7494–7502 (1993).

    CAS  PubMed  Google Scholar 

  48. Ikeda, Y. et al. Steroidogenic factor 1 and Dax1 co-localize in multiple cell lineages: potential links in endocrine development. Mol. Endrocrinol. 10, 1261–1272 (1996).

    CAS  Google Scholar 

  49. Narvaez, V. Expression and regulation of sex determining genes in the mouse. Thesis, Univ. London, (1996).

  50. Sham, M. H. et al. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72, 183–196 (1993).

    Article  CAS  Google Scholar 

  51. Wilkinson, D. & Nieto, M. A. Guide to Techniques in Mouse Development. Methods Enzymol. 225, 361–372 (1993).

    Book  Google Scholar 

Download references

Acknowledgements

We thank members of R.L.B.'s laboratory and B. Capel for suggestions, P.Sassone-Corsi for anti-DAX1 antibody, E. Zanaria for genomic and cDNA probes, E. Grigorieva for help with histological analysis, K. Woolley and C. Wise for help with mouse genotyping, the animal caretakers at NIMR, and J. Brock for photography. The financial support from the MRC and Louis Jeantet Foundation (R.L.-B.), the DGAPA-UNAM, Mexico and the British Council (V.N.), and Telethon, Italy and the European Commission (G.C.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, A., Narvaez, V., Burgoyne, P. et al. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761–767 (1998). https://doi.org/10.1038/35799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35799

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing