Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice

Abstract

Rapid temperature change fractionates gas isotopes in unconsolidated snow, producing a signal that is preserved in trapped air bubbles as the snow forms ice. The fractionation of nitrogen and argon isotopes at the end of the Younger Dryas cold interval, recorded in Greenland ice, demonstrates that warming at this time was abrupt. This warming coincides with the onset of a prominent rise in atmospheric methane concentration, indicating that the climate change was synchronous (within a few decades) over a region of at least hemispheric extent, and providing constraints on previously proposed mechanisms of climate change at this time. The depth of the nitrogen-isotope signal relative to the depth of the climate change recorded in the ice matrix indicates that, during the Younger Dryas, the summit of Greenland was 15 ± 3 °C colder than today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of a heat and molecular diffusion model of gas in polar firn.
Figure 2: GISP2 records of accumulation9, δ18Oice (ref. 2), and δ15N of trapped air (ref. 47 and this work) covering the last deglaciation.
Figure 3: Gas data from GISP2 covering the end of the Younger Dryas, plotted versus depth.
Figure 4: Isotopic and CH4 data plotted versus age derived by this work.

Similar content being viewed by others

References

  1. Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  2. Stuiver, M., Groetes, P. M. & Braziunas, T. F. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat. Res. 44, 341–354 (1995).

    Article  CAS  Google Scholar 

  3. Alley, R. B. et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529 (1993).

    Article  ADS  Google Scholar 

  4. Chappellaz, J. et al. Synchronous changes in atmospheric CH4and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1093 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Chappellaz, J., Barnela, J.-M., Raymond, D., Korotkevich, Y. S. & Lorius, C. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 127–131 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Chapellaz, J. et al. Changes in the atmospheric CH4gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. 102, 15987–15997 (1997).

    Article  ADS  Google Scholar 

  8. Cuffey, K. M. et al. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Cuffey, K. M. & Clow, G. D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res. 102, 26383–26396 (1997).

    Article  ADS  Google Scholar 

  10. Jouzel, J. et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. 102, 26471–26487 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Charles, C., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science 263, 508–511 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Schwander, J., Stauffer, B. & Sigg, A. Air mixing in firn and the age of the air at pore close-off. Ann. Glaciol. 10, 141–145 (1988).

    Article  ADS  Google Scholar 

  13. Schwander, J. et al. The age of the air in the firn and the ice at summit, Greenland. J. Geophys. Res. 98, 2831–2838 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Sowers, T., Bender, M. & Raynaud, D. Elemental and isotopic composition of occluded O2and N2in polar ice. J. Geophys. Res. 94, 5137–5150 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Meese, D. A. et al. The Greenland Ice Sheet Project 2 depth-age scale: Methods and results. J. Geophys. Res. 102, 26411–26423 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Herron, M. M. & Langway, C. C. Firn densification: An empirical model. J. Glaciol. 25, 373–385 (1980).

    Article  ADS  Google Scholar 

  17. Schwander, J. et al. Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483–19494 (1997).

    Article  ADS  Google Scholar 

  18. Grew, K. E. & Ibbs, T. L. Thermal Diffusion in Gases (Cambridge Univ. Press, (1952)).

    MATH  Google Scholar 

  19. Chapman, S. & Cowling, T. G. The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, (1970)).

    MATH  Google Scholar 

  20. Chapman, S. & Dootson, F. W. Anote on thermal diffusion. Phil. Mag. 33, 248–253 (1917).

    Article  CAS  Google Scholar 

  21. Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Dalton, J. On the constitution of the atmosphere. Phil. Trans. Part 1, 174–187 (1826).

  23. Gibbs, J. W. Collected Works Vol. 1, Thermodynamics (Yale Univ. Press, New Haven, (1928)).

    Google Scholar 

  24. Craig, H., Horibe, Y. & Sowers, T. Gravitational separation of gases and isotopes in polar ice caps. Science 242, 1675–1678 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Schwander, J. in The Environmental Record in Glaciers and Ice Sheets (eds Oeschger, H. & Langway, C.) 53–67 (Wiley, New York, (1989)).

    Google Scholar 

  26. Severinghaus, J. P., Bender, M. L., Keeling, R. F. & Broecker, W. S. Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion. Geochim. Cosmochim. Acta 60, 1005–1018 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Severinghaus, J. P. & Sowers, T. Thermal diffusion as a temperature-change indicator in ice core climate records. (abstr.) Eos 76, F291 (1995).

    Google Scholar 

  28. Paterson, W. S. B. The Physics of Glaciers (Pergamon, Oxford, (1969)).

    Google Scholar 

  29. Mayewski, P. A. et al. The atmosphere during the Younger Dryas. Science 261, 195–197 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Alley, R. B. et al. Changes in continental and sea-salt atmospheric loadings in central Greenland through the most recent deglaciation. J. Glaciol. 41, 503–514 (1995).

    Article  ADS  Google Scholar 

  31. Sowers, T., Bender, M., Raynaud, D. & Korotkevich, Y. S. δ15N of N2in air trapped in polar ice: A tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. J. Geophys. Res. 97, 15683–15697 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Colbeck, S. C. Air movement in snow due to windpumping. J. Glaciol. 35, 209–213 (1989).

    Article  ADS  Google Scholar 

  33. Johnsen, S. J., Dansgaard, W. & White, J. W. C. The origin of Arctic precipitation under present and glacial conditions. Tellus B 41, 452–468 (1989).

    Article  ADS  Google Scholar 

  34. Fairbanks, R. G. The age and origin of the “Younger Dryas climate event” in Greenland ice cores. Paleoceanography 5, 937–948 (1990).

    Article  ADS  Google Scholar 

  35. Dansgaard, W., White, J. W. C. & Johnsen, S. J. The abrupt termination of the Younger Dryas climate event. Nature 339, 532–534 (1989).

    Article  ADS  Google Scholar 

  36. Chappellaz, J., Fung, J. Y. & Thompson, A. M. The atmospheric CH4increase since the Last Glacial Maximum. Tellus B 45, 242–257 (1993).

    Article  ADS  Google Scholar 

  37. Martinerie, P., Brasseur, G. P. & Granier, C. The chemical composition of ancient atmospheres: A model study constrained by ice core data. J. Geophys. Res. 100, 14291–14304 (1995).

    Article  ADS  Google Scholar 

  38. Prinn, R. G. et al. Atmospheric trends and lifetime of CH3CCl3and global OH concentrations. Science 269, 187–192 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Duplessy, J. C. et al. Changes in surface salinity of the North Atlantic Ocean during the last deglaciation. Nature 358, 485–488 (1992).

    Article  ADS  CAS  Google Scholar 

  40. Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta. 53, 2465–2501 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Bender, M. L., Sewers, T., Barnola, J.-M. & Chappellaz, J. Changes in the O2/N2ratio of the atmosphere during recent decades reflected in the composition of air in the firn at Vostok Station, Antarctica. Geophys. Res. Lett. 21, 189–192 (1994).

    Article  ADS  CAS  Google Scholar 

  42. Battle, M. et al. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383, 231–235 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Alley, R. B. & Koci, B. R. Recent warming in central Greenland? Ann. Glaciol. 14, 6–8 (1990).

    Article  ADS  Google Scholar 

  44. 4. Taylor, K. C. et al. The ‘flickering switch’ of late Pleistocene climate change. Nature 361, 432–436 (1993).

    Article  ADS  Google Scholar 

  45. Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J.-M. & Mazaudier, D. Physical and climatic parameters which influence the air content in polar ice. Earth Planet. Sci. Lett. 112, 1–13 (1992).

    Article  ADS  Google Scholar 

  46. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    Article  ADS  CAS  Google Scholar 

  47. Bender, M. et al. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663–666 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Broecker for discussions; R. Keeling for prompting our study of thermal diffusion; J. Schwander and R. Francey for reviews; B. Luz for developing the method for analysis of Ar isotopes in air; M. Swanson for the CH4 analyses; J. Orchardo for laboratory assistance; K. Cuffey, G. Clow and J. Schwander for providing pre-publication manuscripts; and the staff of the National Ice Core Laboratory for assistance in ice handling. J.P.S. was supported by a NOAA Climate and Global Change postdoctoral fellowship. We thank US NSF and US DOE (National Institutes of Global Environmental Change) for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Severinghaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severinghaus, J., Sowers, T., Brook, E. et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998). https://doi.org/10.1038/34346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34346

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing