Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental quantum teleportation

Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme showing principles involved in quantum teleportation (a) and the experimental set-up (b).
Figure 2: Photons emerging from type II down-conversion (see text).
Figure 3: Theoretical prediction for the three-fold coincidence probability between the two Bell-state detectors (f1, f2) and one of the detectors analysing the teleported state.
Figure 4: Experimental results.
Figure 5: Four-fold coincidence rates (without background subtraction).

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935).

    Article  ADS  Google Scholar 

  3. Bennett, C. H. Quantum information and computation. Phys. Today 48(10), 24–30, (October1995).

    Article  ADS  Google Scholar 

  4. Bennett, C. H., Brassard, G. & Ekert, A. K. Quantum Cryptography. Sci. Am. 267(4), 50–57, (October1992).

    Article  Google Scholar 

  5. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Schumacher, B. Quantum coding. Phys. Rev. A 51, 2738–2747 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Clauser, J. F. & Shimony, A. Bell's theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Greenberger, D. M., Horne, M. A. & Zeilinger, A. Multiparticle interferometry and the superposition principle. Phys. Today August, 22–29 (1993).

    Article  Google Scholar 

  11. Tittel, W. et al. Experimental demonstration of quantum-correlations over more than 10 kilometers. Phys. Rev. Lett. (submitted).

  12. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Bose, S., Vedral, V. & Knight, P. L. Amultiparticle generalization of entanglement swapping.preprint.

  14. Wootters, W. K. & Zurek, W. H. Asingle quantum cannot be cloned. Nature 299, 802–803 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Loudon, R. Coherence and Quantum Optics VI (eds Everly, J. H. & Mandel, L.) 703–708 (Plenum, New York, (1990)).

    Book  Google Scholar 

  16. Zeilinger, A., Bernstein, H. J. & Horne, M. A. Information transfer with two-state two-particle quantum systems. J. Mod. Optics 41, 2375–2384 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  17. Weinfurter, H. Experimental Bell-state analysis. Europhys. Lett. 25, 559–564 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Braunstein, S. L. & Mann, A. Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727–R1730 (1995).

    Article  ADS  Google Scholar 

  19. Michler, M., Mattle, K., Weinfurter, H. & Zeilinger, A. Interferometric Bell-state analysis. Phys. Rev. A 53, R1209–R1212 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed sources. Ann. NY Acad. Sci. 755, 91–102 (1995).

    Article  ADS  Google Scholar 

  21. Fry, E. S., Walther, T. & Li, S. Proposal for a loophole-free test of the Bell inequalities. Phys. Rev. A 52, 4381–4395 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. Zeilinger, A., Horne, M. A., Weinfurter, H. & Zukowski, M. Three particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bennett, I. Cirac, J. Rarity, W. Wootters and P. Zoller for discussions, and M. Zukowski for suggestions about various aspects of the experiments. This work was supported by the Austrian Science Foundation FWF, the Austrian Academy of Sciences, the TMR program of the European Union and the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dik Bouwmeester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouwmeester, D., Pan, JW., Mattle, K. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997). https://doi.org/10.1038/37539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing