Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin

An Erratum to this article was published on 20 November 1997

Abstract

In blood coagulation, units of the protein fibrinogen pack together to form a fibrin clot, but a crystal structure for fibrinogen is needed to understand how this is achieved. The structure of a core fragment (fragment D) from human fibrinogen has now been determined to 2.9 Å resolution. The 86K three-chained structure consists of a coiled-coil region and two homologous globular entities oriented at approximately 130 degrees to each other. Additionally, the covalently bound dimer of fragment D, known as ‘double-D’, was isolated from human fibrin, crystallized in the presence of a Gly-Pro-Arg-Pro-amide peptide ligand, which simulates the donor polymerization site, and its structure solved by molecular replacement with the model of fragment D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the three polypeptide chains that compose human fibrinogen fragment D.
Figure 2: a, Ribbon representation of fragment D, showing the region of coiled coils and the globular β and γ domains.
Figure 3: a, Ribbon representation of fragment D, showing the region of coiled coils and the globular β and γ domains.
Figure 4: a, Topology of β-chain (green) and γ-chain (red) C-terminal domains.
Figure 5: a, Topology of β-chain (green) and γ-chain (red) C-terminal domains.
Figure 6: a, Topology of β-chain (green) and γ-chain (red) C-terminal domains.
Figure 7: Multiple alignment of carboxyl domains of fibrinogen β (FBE)- and γ (FGA)-chains from various species (H, human; F, frog; C, chicken; L, lamprey).
Figure 8: a, Electron-density omit map showing peptide ligand Gly-Pro-Arg-Pro-amide bound to γ-chain binding site in double-D as calculated with |Fo| − |Fc| coefficients and phases from the refined model contoured at 2.2σ.
Figure 9: a, Electron-density omit map showing peptide ligand Gly-Pro-Arg-Pro-amide bound to γ-chain binding site in double-D as calculated with |Fo| − |Fc| coefficients and phases from the refined model contoured at 2.2σ.
Figure 10: Four views across the D–D interface as seen from increasing distance.
Figure 11: Four views across the D–D interface as seen from increasing distance.
Figure 12: Four views across the D–D interface as seen from increasing distance.
Figure 13: Four views across the D–D interface as seen from increasing distance.

Similar content being viewed by others

References

  1. Bailey, K., Astbury, W. T. & Rudall, K. M. Fibrinogen and fibrin as members of the keratin–myosin group. Nature 151, 716–717 (1943).

    Article  ADS  CAS  Google Scholar 

  2. Hall, C. E. & Slayter, H. S. The fibrinogen molecule: its size, shape and mode of polymerization. J. Biophys. Biochem. Cytol. 5, 11–15 (1959).

    Article  CAS  Google Scholar 

  3. Cohen, C. Invited discussion at 1960 Symposium on Protein Structure. J. Polymer Sci. 49, 144–145 (1961).

    Article  Google Scholar 

  4. Doolittle, R. F., Cassman, K. G., Cottrell, B. A., Friezner, S. J. & Takagi, T. Amino acid sequence studies on the α-chain of human fibrinogen. The covalent structure of the α-chain portion of fragment D. Biochemistry 16, 1710–1710 (1977).

    Article  CAS  Google Scholar 

  5. Laudano, A. P. & Doolittle, R. F. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, numbers of binding sites and species differences. Biochemistry 19, 1013–1019 (1980).

    Article  CAS  Google Scholar 

  6. Chen, R. & Doolittle, R. F. γ–γ Crosslinking sites in human and bovine fibrin. Biochemistry 10, 4486–4491 (1971).

    Article  CAS  Google Scholar 

  7. Pizzo, S. V., Schwartz, M. L., Hill, R. L. & McKee, P. A. The effects of plasmin on the subunit structure of human fibrin. J. Biol. Chem. 248, 4574–4583 (1973).

    CAS  PubMed  Google Scholar 

  8. Hudry-Clergeon, G., Patural, L. & Suscillon, M. Identification d'un complexe (D-D) E dans les produits de dégradation de la fibrine bovine stabilisee par le facteur XIII. Pathol. Biol. 22 (suppl.), 47–52 (1974).

    Google Scholar 

  9. Rao, S. P. S. et al. Fibrinogen structure in projection at 18 Å resolution electron density by co-ordinated cryo-electron microscopy and X-ray crystallography. J. Mol. Biol. 222, 89–98 (1992).

    Article  ADS  Google Scholar 

  10. Yee, V. C. et al. Crystal structure of a 30 kDa C-terminal fragment from the γ chain of human fibrinogen. Structure 5, 125–138 (1997).

    Article  CAS  Google Scholar 

  11. Dang, C. V., Ebert, R. F. & Bell, W. R. Localization of a fibrinogen calcium binding site between γ-subunit positions 311 and 336 by terbium fluorescence. J. Biol. Chem. 260, 9713–9717 (1985).

    CAS  PubMed  Google Scholar 

  12. Townsend, R. R. et al. Carbohydrate structure of human fibrinogen. J. Biol. Chem. 257, 9704–9710 (1982).

    CAS  PubMed  Google Scholar 

  13. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of the influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Bouma, H. II, Takagi, T. & Doolittle, R. F. The arrangement of disulfide bonds in fragment D from human fibrinogen. Thromb. Res. 13, 557–562 (1978).

    Article  CAS  Google Scholar 

  15. Doolittle, R. F. Adetailed consideration of a principal domain of vertebrate fibrinogen and its relatives. Protein Sci. 1, 1563–1577 (1992).

    Article  CAS  Google Scholar 

  16. Yamazumi, K. & Doolittle, R. F. Photoaffinity labeling of the primary fibrin polymerization site: Localization of the label to tyrosine γ-chain Tyr-363. Proc. Natl Acad. Sci. USA 89, 2893–2896 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Gerloff, D. E., Cohen, F. E. & Benner, S. A. Apredicted consensus structure for the C terminus of the β and γ chains of fibrinogen. Proteins Struct. Funct. Genet. 27, 279–289 (1997).

    Article  CAS  Google Scholar 

  18. Okumura, N. et al. Fibrinogen Matsumoto I: a γ364 Asp His (GAT to AT) substitution associated with defective fibrin polymerization. Thromb. Haemost. 75, 887–891 (1996).

    CAS  PubMed  Google Scholar 

  19. Ebert, R.. F. (ed.) 1994 Index of Variant Human Fibrinogens (CRC Press, Boca Raton, FL, (1994)).

    Google Scholar 

  20. Janin, J., Miller, S. & Chothia, C. Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204, 155–164 (1988).

    Article  CAS  Google Scholar 

  21. Mosesson, M. W. et al. The role of fibrinogen D domain intermolecular associaiton sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg to Cys). J. Clin. Invest. 96, 1053–1058 (1995).

    Article  CAS  Google Scholar 

  22. Donahue, J. P., Patel, H., Anderson, W. F. & Hawiger, J. Three-dimensional structure of the platelet integrin recognition segment of the fibrinogen γ chain obtained by carrier protein-driven crystallization. Proc. Natl Acad. Sci. USA 92, 12178–12182 (1994).

    Article  ADS  Google Scholar 

  23. Weisel, J. W., Francis, C. W., Nagaswami, C. & Marder, V. J. Determination of the topology of factor XIIIa-induced fibrin γ-chain cross-links by electron microscopy of ligated fragments. J. Biol. Chem. 268, 26618–26624 (1993).

    CAS  PubMed  Google Scholar 

  24. Mosesson, M. W., Siebenlist, K. R., Hainfeld, J. F. & Wall, J. S. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils. J. Struct. Biol. 115, 88–101 (1995).

    Article  CAS  Google Scholar 

  25. Mosesson, M. W., Siebenlist, K. R., Amrani, D. L. & DiOrio, J. P. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc. Natl Acad. Sci. USA 86, 1113–1117 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Siebenlist, K. R., Meh, D. A. & Mosesson, M. W. Plasma factor XIII binds specifically to fibrinogen molecules containing γ′ chains. Biochemistry 35, 10448–10453 (1996).

    Article  CAS  Google Scholar 

  27. Mosesson, M. W., Hainfeld, J., Wall, J. & Haschemeyer, R. H. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J. Mol. Biol. 153, 695–718 (1981).

    Article  CAS  Google Scholar 

  28. Veklich, Y. I., Gorkun, O. V., Medved, L. V., Nieuvenhuizen, W. & Weisel, J. W. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated αC fragments on polymerization. J. Biol. Chem. 268, 13577–13585 (1993).

    CAS  PubMed  Google Scholar 

  29. Schielen, W. J. G., Adams, H. P. H. M., Voskuilen, M., Tesser, G. J. & Nieuwenhuizen, W. Structural requirements of position Aα-157 in fibrinogen for the fibrin-induced rate enhancement of the activation of plasminogen by tissue-type plasminogen activator. Biochem. J. 276, 655–659 (1991).

    Article  CAS  Google Scholar 

  30. Nieuwenhuizen, W., Vermond, A., Voskuilen, M., Traas, D. W. & Verheijen, J. H. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim. Biophys. Acta 748, 86–92 (1983).

    Article  CAS  Google Scholar 

  31. Pratt, K. P. et al. The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal γ chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc. Natl Acad. Sci. USA 94, 7176–7181 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Mihalyi, E. & Godfrey, J. E. Digestion of fibrinogen by trypsin. II. Characterization of the large fragment obtained. Biochim. Biophys. Acta 67, 90–103 (1963).

    Article  CAS  Google Scholar 

  33. Everse, S. J., Pelletier, H. & Doolittle, R. F. Crystallization of fragment D from human fibrinogen. Protein Sci. 4, 1013–1016 (1995).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Collaborative Computing Project Number 4 The CCP4 suite: Programs for Protein Crystallography Version 3.1. Acta Crystallogr. D 50, 760–763 (1994).

  36. Furey, W. & Swaminathan, S. Phases 95: A program package for processing and analyzing diffraction data from macromolecules. Methods Enzymol. (in the press).

  37. Stein, P. E. et al. The crystal structure of pertussis toxin. Structure 2, 45–57 (1994).

    Article  CAS  Google Scholar 

  38. Kleywegt, G. J. & Jones, T. A. From first map to final model. Joint CCP4 and ESF-EACBM. Newslett. Protein Crystallogr. 31, 59–66 (1994).

    Google Scholar 

  39. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  40. Brunger, A. T. X-PLOR. Version 3.1. A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, (1992)).

    Google Scholar 

  41. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  42. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  43. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  44. Esnouf, R. M. An extensively modified version of Molscript which includes greatly enhanced colouring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  45. Bacon, D. J. & Anderson, W. F. Afast algorithm for rendering space-filling molecule pictures. J. Mol. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

  46. Merritt, E. A. & Murphy, M. E. P. Raster3D verison 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  47. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  48. Barton, G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  49. Pan, Y. & Doolittle, R. F. cDNA sequence of a second fibrinogen α chain in lamprey: an archetypal version alignable with full-length β and γ chains. Proc. Natl Acad. Sci. USA 89, 2066–2070 (1992).

    Article  ADS  CAS  Google Scholar 

  50. Fu, Y., Cao, Y., Hertzberg, K. M. & Grieninger, G. Fibrinogen α genes: conservation of bipartite transcripts and carboxy-terminal-extended α subunits in vertebrates. Genomics 30, 71–76 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kraut for the use of his X-ray faciities; M. Sawaya for his time; H.Pelletier for help in establishing the initial crystallization conditions; D. Stuart for assistance; N. Xuong and J. Noel for access to equipment; R. Sweet at the Brookhaven National Laboratory for assistance; G.Walter for encouragement; and M. Riley and L. Veerapandian for technical assistance. This work was supported by an NIH grant and an American Heart Association postdoctoral fellowship to S.J.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell F. Doolittle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spraggon, G., Everse, S. & Doolittle, R. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 389, 455–462 (1997). https://doi.org/10.1038/38947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38947

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing