17. Fülöp, V., Moir, J. W. B., Ferguson, S. J. \& Hajdu, J. Crystallisation and preliminary crystallographic study of cytochrome cd_{1} nitrite reductase from Thiosphaera pantotropha. J. Mol. Biol. 232, 1211-1212 (1993).
18. Berger, H. \& Wharton, D. C. Small angle X-ray scattering studies of oxidised and reduced cytochrome oxidase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 622, 355-359 (1980)
19. Moore, G. R. \& Pettigrew, G. W. Cytochromes c: Evolutionary, Structural and Physicochemical Aspects (Springer, Berlin, 1990).
20. Pettigrew, G. W. \& Moore, G. R. Cytochromes c: Biological Aspects (Springer, Berlin, 1987).
21. Harutunyan, E. H. et al. The binding of carbon monoxide and nitric oxide to leghaemoglobin in comparison with other haemoglobins. J. Mol. Biol. 264, 152-161 (1996).
22. Edwards, S. L., Kraut, J. \& Poulos, T. L. Crystal structure of nitric oxide inhibited cytochrome-c peroxidase. Biochemistry 27, 8074-8081 (1988).
23. Adman, E. T., Godden, J. W. \& Turley, S. The structure of copper nitrite reductase from Achromobacter cycloclastes at five pH values, with NO_{2}^{-}bound and with type II copper depleted. J. Biol. Chem. 270, 27458-27474 (1995).
24. Williams, P. A. thesis, Oxford Univ. (1996).
25. Poulos, T. L. Ligands and electrons and haem proteins. Nature Struct. Biol. 3, 401-403 (1996)
26. Wittung, P. \& Malmstrom, B. G. Redox-linked conformational changes in cytochrome coxidase. FEBS Lett. 388, 47-49 (1996).
27. Pascher, T., Chesick, J. P., Winkler, J. R. \& Gray, H. B. Protein folding triggered by electron transfer. Science 271, 1558-1560 (1996).
28. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein. J. Appl. Crystallogr. 24, 946-950 (1991).
29. Merritt, E. A. \& Murphy, M. E. P. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869-873 (1994).
30. Brünger, A. T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-474 (1992).

Acknowledgements. We thank the ESRF and SRS Daresbury for data collection facilities; the EMBL outstation, Grenoble, for use of an image plate detector; M.L.D. Page for expert advice; R. Bryan and R. Esnouf for computing; K. Harlos for help with in-house data collection; F. Armstrong and J. Hirst for providing electrochemically reduced methyl viologen. This work was supported by MRC, BBSRC and EUBIOTECH. The Oxford Centre for Molecular Sciences is funded jointly by BBSRC, EPSRC and MRC. N.F.W.S. was supported by a Wellcome Trust prize studentship. V.F. is a Royal Society university research fellow.

Correspondence and requests for materials should be addressed to P.A.W. (e-mail: pamela@scripps.edu) V.F. (e-mail: vilmos@biop.ox.ac.uk) or J.H. (e-mail: janos@xray.bmc.uu.se).

errata

The yeast genome directory

Nature 387 (suppl.) (1997)
In the list of authors given on page 5 of this supplement, the names of some authors were omitted or misspelled (asterisks). These were: R. Altmann; W. Arnold ${ }^{\star}$; M. de Haan ${ }^{*}$; K. Hamberg; K. Hinni; L. Jones; W. Kramer; H. Küster*; K. C. T. Maurer*; D. Niblett; N. Paricio ${ }^{*}$; A. G. Parle-McDermott*; C. Rebischung; C. Richards; L. Rifkin*; J. Robben; C. Rodrigues-Pousada ${ }^{\star}$; I. SchaaffGerstenschläger*; P. H. M. Smits ${ }^{\star}$; Y. Su ${ }^{\star}$; Q. J. M. van der Aart ${ }^{\star}$; J. C. van Vliet-Reedijk ${ }^{*}$; A. Wach; M. Yamazaki*.

Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth's inner core

Michael I. Bergman

Nature 389, 60-63 (1997)
Owing to a typographical error, this Letter appeared under the title "Measurements of electric anisotropy due to solidification texturing and the implications for the Earth's inner core". The word 'elastic' in the first line was erroneously replaced with 'electric'.

cAMP-induced switching in turning direction of nerve growth cones

Hong-jun Song, Guo-li Ming \& Mu-ming Poo
Nature 388, 275-279 (1997)
The order of panels in Fig. 3 of this Letter is incorrect as published. Figure $3 \mathrm{a}-\mathrm{e}$ should be labelled as $\mathrm{f}-\mathrm{j}$, and Fig. 3f-j should be labelled a-e.

corrections

Synthesis and X-ray structure of dumb-bell-shaped \mathbf{C}_{120}

Guan-Wu Wang, Koichi Komatsu, Yasujiro Murata \& Motoo Shiro

Nature 387, 583-586 (1997)
In this Letter, we overlooked a citation of G. Oszlanyi et al., Phys. Rev. B 54, 11849 (1996), who reported the observation of covalently bound $\left(\mathrm{C}_{60}\right)_{2}^{2-}$ dianions from the X-ray powder diffraction patterns of the metastable phases of KC_{60} and RbC_{60}.

The complete genome sequence of the gastric pathogen Helicobacter pylori

Jean-F. Tomb, Owen White, Anthony R. Kerlavage, Rebecca A. Clayton, Granger G. Sutton, Robert D. Fleischmann, Karen A. Ketchum, Hans Peter Klenk, Steven Gill, Brian A. Dougherty, Karen Nelson, John Quackenbush, Lixin Zhou, Ewen F. Kirkness, Scott Peterson, Brendan Loftus, Delwood Richardson, Robert Dodson, Hanif G. Khalak, Anna Glodek, Keith McKenney, Lisa M. Fitzegerald, Norman Lee, Mark D. Adams, Erin K. Hickey, Douglas E. Berg, Jeanine D. Gocayne, Teresa R. Utterback, Jeremy D. Peterson, Jenny M. Kelley, Matthew D. Cotton, Janice M. Weidman, Claire Fujii, Cheryl Bowman, Larry Watthey, Erik Wallin, William S. Hayes, Mark Borodovsky, Peter D. Karp, Hamilton O. Smith, Claire M. Fraser \& J. Craig Venter

Nature 388, 539-547 (1997)
In this Article, we incorrectly stated that the amino acids lysine and arginine are twice as abundant in H. pylori proteins as they are in those of Haemophilus influenzae and Escherichia coli. This statement was derived from amino-acid analyses that compared absolute differences in abundance, but these do not reflect the frequencies with which amino acids are found in the organisms in question. The actual abundance of arginine in H. pylori, H. influenzae and E. coli is $3.5,4.5$ and 5.5%, respectively; the abundance of lysine in these organisms is $8.9,6.3$ and 4.4%, respectively. This oversight is particularly unfortunate because Russell H. Doolittle, who wrote an accompanying News and Views on our Article and brought this to our attention, was led to comment on the significance of our inaccurate observation. We regret this and any other misunderstanding that our error may have caused.

The complete genome sequence of the gastric pathogen Helicobacter pylori

Jean-F. Tomb ${ }^{*}$, Owen White ${ }^{*}$, Anthony R. Kerlavage ${ }^{*}$, Rebecca A. Clayton ${ }^{*}$, Granger G. Sutton*, Robert D. Fleischmann ${ }^{*}$, Karen A. Ketchum ${ }^{*}$, Hans Peter Klenk ${ }^{*}$, Steven Gill ${ }^{*}$, Brian A. Dougherty ${ }^{*}$, Karen Nelson ${ }^{*}$, John Quackenbush ${ }^{*}$, Lixin Zhou ${ }^{*}$, Ewen F. Kirkness ${ }^{*}$, Scott Peterson ${ }^{*}$, Brendan Loftus*, Delwood Richardson ${ }^{*}$, Robert Dodson ${ }^{*}$, Hanif G. Khalak ${ }^{*}$, Anna Glodek ${ }^{*}$, Keith McKenney ${ }^{*}$, Lisa M. Fitzegerald ${ }^{*}$, Norman Lee ${ }^{*}$, Mark D. Adams*, Erin K. Hickey*, Douglas E. Berg ${ }^{\dagger}$, Jeanine D. Gocayne ${ }^{\star}$, Teresa R. Utterback ${ }^{\star}$, Jeremy D. Peterson* ${ }^{*}$ Jenny M. Kelley ${ }^{*}$, Matthew D. Cotton ${ }^{*}$, Janice M. Weidman*, Claire Fujii*, Cheryl Bowman*, Larry Watthey* ${ }^{*}$, Erik Wallin \ddagger, William S. Hayes \S, Mark Borodovsky§, Peter D. Karp\|, Hamilton O. Smithy, Claire M. Fraser* \& J. Craig Venter*
* The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
\dagger Department of Molecular Biology, School of Medicine, Washington University St Louis, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA
\ddagger Department of Biochemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
§School of Biology, Georgia Tech, Atlanta, Georgia 30332, USA
|| SRI International, Artificial Intelligence Center, 333 Ravenswood Avenue, Menlo Park, California 94025, USA
g Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA

Abstract

Helicobacter pylori, strain 26695, has a circular genome of $\mathbf{1 , 6 6 7 , 8 6 7}$ base pairs and $\mathbf{1 , 5 9 0}$ predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.

For most of this century the cause of peptic ulcer disease was thought to be stress-related and the disease to be prevalent in hyperacid producers. The discovery ${ }^{1}$ that Helicobacter pylori was associated with gastric inflammation and peptic ulcer disease was initially met with scepticism. However, this discovery and subsequent studies on H. pylori have revolutionized our view of the gastric environment, the diseases associated with it, and the appropriate treatment regimens ${ }^{2}$.

Helicobacter pylori is a micro-aerophilic, Gram-negative, slowgrowing, spiral-shaped and flagellated organism. Its most characteristic enzyme is a potent multisubunit urease ${ }^{3}$ that is crucial for its survival at acidic pH and for its successful colonization of the gastric environment, a site that few other microbes can colonize ${ }^{2}$. H. pylori is probably the most common chronic bacterial infection of humans, present in almost half of the world population ${ }^{2}$. The presence of the bacterium in the gastric mucosa is associated with chronic active gastritis and is implicated in more severe gastric diseases, including chronic atrophic gastritis (a precursor of gastric carcinomas), peptic ulceration and mucosa-associated lymphoid tissue lymphomas ${ }^{2}$. Disease outcome depends on many factors, including bacterial genotype, and host physiology, genotype and dietary habits ${ }^{4,5}$. H. pylori infection has also been associated with persistent diarrhoea and increased susceptibility to other infectious diseases ${ }^{6}$.

Because of its importance as a human pathogen, our interest in its biology and evolution, and the value of complete genome sequence information for drug discovery and vaccine development, we have

General	
Coding regions (91.0\%)	
Stable RNA (0.7\%)	
Non-coding repeats (2.3\%)	
Intergenic sequence (6.0\%)	
RNA	
Ribosomal RNA	Coordinates
23S-5S	445,306-448,642 bp
23S-5S	1,473,557-1,473,919 bp
16 S	1,209,082-1,207,584 bp
16 S	1,511,138-1,512,635 bp
5 S	448,041-448,618 bp
Transfer RNA	
Structural RNA	
1 species (ssrD)	629,845-630,124 bp
DNA	
Insertion sequences	
IS605 13 copies (5 full-length, 8 partial)	
IS606 4 copies (2 fulll-length, 2 partial)	
Distinct $G+C$ regions	Associated genes
region 1 ($33 \% \mathrm{G}+\mathrm{C}$) 452-479 kb	IS605, 5SRNA and repeat 7; virB4
region $2(35 \% \mathrm{G}+\mathrm{C}) 539-579 \mathrm{~kb}$	cag PAI (Fig. 4)
region 3 ($33 \% \mathrm{G}+\mathrm{C}$) $1,049-1,071 \mathrm{~kb}$	IS605, 5SRNA and repeat 7
region 4 ($43 \% \mathrm{G}+\mathrm{C}$) $1,264-1,276 \mathrm{~kb}$	β and β^{\prime} RNA polymerase, EF-G (fusA)
region $5(33 \% \mathrm{G}+\mathrm{C}) 1,590-1,602 \mathrm{~kb}$	two restriction/modification systems
Coding sequences	
1,590 coding sequences (average 945 bp)	
1,091 identified database match	
499 no database match	

sequenced the genome of a representative H. pylori strain by the whole-genome random sequencing method as described for Haemophilus influenzae ${ }^{7}$, Mycoplasma genitalium ${ }^{8}$ and Methanococcus jannaschii ${ }^{9}$.

General features of the genome

Genome analysis. The genome of H. pylori strain 26695 consists of a circular chromosome with a size of $1,667,867$ base pairs (bp) and average $\mathrm{G}+\mathrm{C}$ content of 39% (Figs 1 and 2). Five regions within the genome have a significantly different $\mathrm{G}+\mathrm{C}$ composition (Table 1 and Fig. 1). Two of them contain one or more copies of the insertion sequence IS605 (see below) and are flanked by a 5 S ribosomal RNA sequence at one end and a 521 bp repeat (repeat 7) near the other. These two regions are also notable because they contain genes involved in DNA processing and one contains 2 orthologues of the virB4/ptl gene, the product of which is required for the transfer of oncogenic T-DNA of Agrobacterium and the secretion of the pertussis toxin by Bordetella pertussis ${ }^{10}$. Another region is the cag pathogenicity island (PAI), which is flanked by 31-bp direct repeats, and appears to be the product of lateral transfer ${ }^{11}$.
RNA and repeat elements. Thirty-six tRNA species were identified using tRNAscan-SE ${ }^{12}$. These are organized into 7 clusters plus 12 single genes. Two separate sets of $23 \mathrm{~S}-5 \mathrm{~S}$ and 16 S ribosomal RNA (rRNA) genes were identified, along with one orphan 5 S gene and one structural RNA gene (Table 1). Associated with each of the two $23 \mathrm{~S}-5 \mathrm{~S}$ gene clusters is a 6 -kilobase (kb) repeat containing a possible operon of 5 ORFs that have no database matches.

Eight repeat families ($>97 \%$ identity) varying in length from 0.47 to 3.8 kb were found in the chromosome (Figs 1 and 2). Members of repeat 7 are found in intergenic regions, while the others are associated with coding sequences and may represent gene duplications. Repeats 1, 2, 3 and 6 are associated with genes that encode outer-membrane proteins (OMP) (Fig. 3).

Two distinct insertion sequence (IS) elements are present. There are five full-length copies of the previously described IS605 ${ }^{11,13}$ and two of a newly discovered element designated IS606. In addition, there are eight partial copies of IS605 and two partial copies of IS606. Both elements encode two divergently transcribed transposases (TnpA and TnpB). IS606 has less than 50% nucleotide identity with IS605 and the IS606 transposases have 29% amino-acid identity with their IS605 counterpart. Both copies of the IS606 TnpB may be non-functional owing to frameshifts.
Origin of replication. As a typical eubacterial origin of replication was not identified ${ }^{14}$, we arbitrarily designated basepair one at the start of a 7 -mer repeat, (AGTGATT) $)_{26}$, that produces translational stops in all reading frames, as this repeated DNA is unlikely to contain any coding sequence.
Open reading frames. One thousand five hundred and ninety predicted coding sequences were identified. They were searched against a non-redundant protein database resulting in 1,091 putative identifications that were assigned biological roles using a classification system adapted from Riley ${ }^{15}$ (Table 2). The 1,590 predicted genes had an average size of 945 bp , similar to that observed in other prokaryotes ${ }^{7-9}$, and no genome-wide strand bias was observed (Fig. 2). More than 70\% of the predicted proteins in H. pylori have a calculated isoelectric point (pI) greater than 7.0, compared to $\sim 40 \%$ in H. influenzae and E. coli. The basic amino acids, arginine and lysine, occur twice as frequently in H. pylori proteins as in those of H . influenzae and E. coli, perhaps reflecting an adaptation of H. pylori to gastric acidity.
Paralagous families. Ninety-five paralogous gene families comprising 266 gene products (16% of the total) were identified (www.tigr.org/tdb/mdb/hpdb/hpdb.html). Of these, 67 (173 proteins) have an assigned role. Sixty-four have only 2 members, while the porin/adhesin-like outer membrane protein family (Fig. 2) is the largest with 32 members. The largest number of paralogues with assigned roles fall into the functional categories of cell
envelope, transport and binding proteins, and proteins involved in replication. The large number of cell envelope proteins might reflect either a reduced biosynthetic capacity or a need to adapt to the challenging gastric environment.

Cell division and protein secretion

The gene content of H. pylori suggests that the basic mechanisms of replication, cell division and secretion are similar to those of E. coli and H. influenzae. However, important differences are noted. For example, apparently missing from the H. pylori genome are orthologues of $\mathrm{DnaC}, \mathrm{MinC}$, and the secretory chaperonin, SecB. In oriCtype primosome formation, the DnaB and DnaC proteins form a $\mathrm{B}-$ C complex that delivers the DnaB helicase to the developing primosome complex ${ }^{16}$. The apparent absence of DnaC in H. pylori suggests that either a novel mechanism for recruiting DnaB exists or a DnaC orthologue with no detectable sequence similarity is present. Similar arguments can be made for other seemingly missing important functions.
H. pylori has a classical set of bacterial chaperones (DnaK, DnaJ, CbpA, GrpE, GroEL, GroES, and HtpG). The transcriptional regulation of H. pylori chaperone genes is likely to be different from that in E. coli, as it seems not to have the sigma factors that upregulate chaperone synthesis in E. coli (heat-shock sigma 32 and stationary-phase sigma S).

In addition to the SecA-dependent secretory pathway, H. pylori has two specialized export systems. One is associated with the cag pathogenicity island ${ }^{11}$ and the other is the flagellar export pathway which is assembled from orthologues of FliH, FliI, FliP, FlhA, FlhB, FliQ, FliR and FliP ${ }^{17}$. Apparently absent from H. pylori is a type IV signal peptidase and orthologues of the dsbABC system, which in other species are required for the maturation of pili and pilin-like structures ${ }^{18}$ and assembly of surface structures involved in virulence and DNA transformation ${ }^{19}$.

Recombination, repair and restriction systems

Systems for homologous recombination and post-replication, mismatch, excision and transcription-coupled repair appear to be present in H. pylori. Also present are genes with similarity to DNA glycosylases which have associated AP endonuclease activity. The RecBCD pathway, which mediates homologous recombination and double-strand break repair, and RecT and RecE orthologues, proteins involved in strand exchange during recombination ${ }^{20}$, seem to be absent. The ability of H. pylori to perform mismatch repair is suggested by the presence of methyl transferases, mutS and uvrD. However, orthologues of MutH and MutL were not identified. Components of an SOS system also appear to be absent.

Bacteria commonly use restriction and modification systems to degrade foreign DNA. In H. pylori, this defence system is well developed with eleven restriction-modification systems identified on the basis of gene order and similarity to endonucleases, methyltransferases, and specificity subunits. Three type I, one type II, and three type IIS systems were identified, as well as four type III systems, including the recently identified epithelial responsive

Figure 1 Linear representation of the H. pylori 26695 chromosome illustrating the location of each predicted protein-coding region, RNA gene, and repeat elements in the genome. Symbols are as follows: $++, \mathrm{Co}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+} ;$?, unknown; $\mathrm{A} / \mathrm{G} / \mathrm{S}$, d-alanine/glycine/D-serine; B12, B12/ferric siderophores; E, glutamate; Mo, molybdenum; P, proline; P/G, proline/glycine betaine; Q , glutamine; S , serine; a-k, α-ketoglutarate; a/o, arginine/ornithine; aa, amino acids (specificity unknown); aa2, dipeptides; aaX, oligopeptides; fum, fumarate, succinate; glu, glucose/galactose; h , hemin; lac, L-lactate; mal, malate 2-oxoglutarate; nic, nicotinamide mononucleotides; pyr, pyrimidine nucleosides. Numbers associated with tRNA symbols represent the number of tRNAs at a locus. Numbers associated with GES represent the number of membrane-spanning domains according to the Goldman, Engelman and Steitz scale as calculated by TopPred ${ }^{47}$.
endonuclease, iceA1, and its associated DNA adenine methyltransferase (M. HypI) genes ${ }^{21,22}$. In addition to the complete systems, seven adenine-specific, and four cytosine-specific methyltransferases, and one of unknown specificity were found. Each of these has an adjacent gene with no database match, suggesting that they may function as part of restriction-modification systems.

Transcription and translation

Although analysis of gene content suggests that H. pylori has a basic transcriptional and translational machinery similar to that of E. coli, interesting differences are observed. For example, no genes for a catalytic activity in tRNA maturation ($r n d, r p h$, or $r n p B$) were identified and of the three known ribonucleases involved in mRNA degradation, only polyribonucleotide phosphorylase was found. Twenty-one genes coding for 18 of the 20 tRNA synthetases normally required for protein biosynthesis were found.

As in most other completely sequenced bacterial genomes, the gene for glutaminyl-tRNA synthetase, $g \ln S$, is missing, and the existence of a transamidation process is assumed. It is also possible that the product of the second glutamyl-tRNA synthetase gene, $g l t X$, present in H. pylori, may have acquired the glutaminyl-tRNA synthetase function. H. pylori provides the first example of a bacterial genome apparently lacking an asparaginyl-tRNA synthetase gene, asnS. A transamidation process to form Asn-tRNAAsn from Asp-tRNAAsn has been reported for the archaeon Haloferax volcanii ${ }^{22}$ and may also operate in H. pylori. Most intriguing, however, is the finding that in H. pylori the genes encoding the β and β^{\prime} subunits of RNA polymerase are fused. In all studied prokaryotes the two genes are contiguous, but separate, and are part of the same transcriptional unit. Whether this gene fusion in H. pylori results in a fused protein, or whether the transcriptional or translational product of the fusion is subject to splicing, is currently not known. It is worth noting that an artificial fusion of the E. coli
$r p o B$ and $r p o C$ genes is viable and results in a transcriptional complex, which has the same stoichiometry as the native complex (K. Severinov, personal communication).

Adhesion and adaptive antigenic variation

Most pathogens show tropism to specific tissues or cell types and often use several adherence mechanisms for successful attachment. H. pylori may use at least five different adhesins to attach to gastric epithelial cells ${ }^{5}$. One of them, HpaA (HP0797), was previously identified as a lipoprotein in the flagellar sheath and outer membrane ${ }^{5,23}$. In addition to the HpaA orthologue, we have identified 19 other lipoproteins. Few have an identifiable function, but some are likely to contribute to the adherence capacity of the organism.

Two adhesins ${ }^{24-26}$, one of which mediates attachment to the Lewis ${ }^{\text {b }}$ histo-blood group antigens, belong to the large family of outer membrane proteins (OMP) (Fig. 3) (T. Boren and R. Haas, personal communication). It is conceivable that other members of these closely related proteins also act as adhesins. Given the large number of sequence-related genes encoding putative surfaceexposed proteins, the potential exists for recombinational events leading to mosaic organization. This could be the basis for antigenic variation in H. pylori and an effective mechanism for host defence evasion, as seen in M. genitalium ${ }^{27}$.

At least one other mechanism for antigenic variation could operate in H. pylori. The DNA sequence at the beginning of eight genes, including five members of the OMP family, contain stretches of CTor AG dinucleotide repeats (Table 3a). In addition, poly(C) or poly (G) tracts occur within the coding sequence of nine other genes (Table 3b). Slipped-strand mispairing within such repeats are documented features of one mechanism of genotypic variation ${ }^{28,29}$. These mechanisms may have evolved in bacterial pathogens to increase the frequency of phenotypic variation in genes involved in

Figure 2 Circular representation of the H. pylori 26695 chromosome. Outer concentric circle: predicted coding regions on the plus strand classified as to role according to the colour code in Fig. 1 (except for unknowns and hypotheticals, which are in black). Second concentric circle: predicted coding regions on the minus strand. Third and fourth concentric circles: IS elements (red) and other repeats (green) on the plus and minus strand, respectively. Fifth and sixth concentric circles: tRNAs (blue), rRNAs (red), and sRNAs (green) on the plus and minus strand, respectively.

SQKY-30

Figure 3 Multiple sequence alignment of members of the outer membrane protein family of H. pylori. These proteins were identified as OMPs based on the characteristic alternating hydrophobic residues at their carboxy termini. All members of this family have one domain of similarity at the amino-terminal end and seven domains of similarity at their carboxy-terminal end. Note that the first 11 of these OMPs share extensive similarity over their entire length. Four of the OMPs were identified as porins (Hops) based on identity to published amino terminal sequences, represented at the top of the alignment ${ }^{50}$. The most likely

candidate for HopD is HP0913, which has 15 matches to the first 20-residue Nterminal peptide sequence ${ }^{50}$. These differences may be due to strain variability. The program Signal-P ${ }^{48}$ was used to identify cleavage sites and signal peptides (underlined). Four of the OMPs have TTG start codons (HP1156, HP0252, HP1113, HP0796). Numbers embedded in the sequences represent amino acids omitted from the alignment. The star symbols indicate that HP722, HP725 and HP9 proteins contain a frameshift in their signal-peptide-coding region. These frameshifts are associated with the presence of dinucleotide repeats (Table 3).
critical interactions with their hosts ${ }^{28}$. Such 'contingency' genes encode surface structures like pilins, lipoproteins or enzymes that produce lipopolysaccharide molecules ${ }^{28}$. Our analysis suggests that the seventeen genes reported in Table 3a,b belong to this category and thus may provide an example of adaptive evolution in H. pylori.

Phenotypic variation at the transcriptional level may also operate in H. pylori. Examples of repetitive DNA mediating transcriptional control have been documented by the presence of oligonucleotide repeats in promoter regions ${ }^{29}$. Homopolymeric tracts of A or T in potential promoter regions of eighteen genes were found, including eight members of the OMP family (Table 3c).

Virulence

The virulence of individual H. pylori isolates has been measured by their ability to produce a cytotoxin-associated protein (CagA) and
an active vacuolating cytotoxin (VacA) ${ }^{5}$. The cagA gene, though not a virulence determinant, is positioned at one end of a pathogenecity island containing genes that elicit the production of interleukin (IL) -8 by gastric epithelial cells ${ }^{11,30}$. Consistent with its more virulent character, H. pylori strain 26695 contains a single contiguous PAI region ${ }^{11}$ (Fig. 4).

VacA induces the formation of acidic vacuoles in host epithelial cells, and its presence is associated epidemiologically with tissue damage and disease ${ }^{31}$. VacA may not be the only ulcer-causing factor as 40% of H . pylori strains do not produce detectable amounts of the cytotoxin in vitro ${ }^{5}$. Sequence differences at the amino terminus and central sections are noted among VacA proteins derived from Tox ${ }^{+}$ and Tox strains ${ }^{31}$. This Tox ${ }^{+}$H. pylori strain contains the more toxigenic $\mathrm{S} 1 \mathrm{a} / \mathrm{ml}$ type cytotoxin and three additional large proteins with moderate similarities to the carboxy-terminal end of the active

cag Pathogenicity island

Figure 4 Comparison between the Cag pathogenicity islands of the sequenced strain, 26695 and the NCTC11638 strain. The twenty nine ORFs of the contiguous PAI in strain 26695 are represented together with the corresponding ORFs from the PAI present in NCTC11638 (AC000108 and U60176). The PAI in NCTC11638 is divided by the IS 605 elements into two regions, cagl and cagll. The PAI in NCTC11638 is flanked by a $31-\mathrm{bp}$ (TTACAATTTGAGCCCATTCTTTAGCTTGTTTT) direct repeat (vertical arrows) as described ${ }^{11}$. Some of the genes encode proteins with similarity to proteins involved either in DNA transfer (Vir and Tra proteins) or in export of a toxin (Ptl protein) ${ }^{10}$. However, these genes do not have the conserved contiguous arrangement found in the VirB, Tra and Ptl operons, suggesting that this PAI is not derived from these systems. Most genes of the PAI have no database match, contrary to a previous suggestion". Thirteen of the proteins have a signal peptide (squiggle line), three of them with a weaker probability (squiggled line + ?). The average length of the signal peptides is 25 amino acids, suggesting that this PAI is of Gram-negative origin. Eight proteins are predicted to have at least two membrane-spanning domains and to be integral membrane proteins
$(\mathrm{IM})^{47}$. Although the two PAI are $\sim 97 \%$ identical at the nucleotide level, there are several notable and perhaps biologically relevant differences between the two sequences. Four of the genes differ in size. In the PAI of strain 26695, HP 520 and 521 are shorter, whereas HP523 is longer, and HP 527 actually spans both ORF13 and 14. In addition, the N-terminal part of HP527 is 129 amino acids longer than the corresponding region in ORF14. HP548/549 contains a frameshift and is therefore probably inactive in strain 26695. The stippled box preceding ORF13 represents an N-terminal extension not annotated in the Genbank entry for the PAI of NCTC11638. The ' x ' indicates ORFs that are neither GeneMark-positive nor GeneSmith-positive, so were not included in our gene list. However, these ORFs may be biologically significant. We do not represent cagR as an ORF, because it is completely contained within ORFQ, and is GeneMark-negative.

Figure 5 Conserved domains of VacA and related proteins. HP887 is the vacuolating cytotoxin (vacA) gene from H. pylori 26695 strain. HP610, HP922 and HP289 are related proteins. Blocks of aligned sequence and the length of each protein are shown. Arrows designate the extents of each VacA domain. The hydrophilic domain (blue boxes) contains the site in VacA at which the N-terminal domain is cleaved into 37 K and 58 K fragments. The putative cleavage site (ANNNQQNS) differs from that of three cytotoxic strains (CCUG 1784, 60190, G39;

AKNDKXES) and is not conserved in the other three VacA-related proteins. The cleavage domain (black boxes) of VacA contains a pair of Cys residues 60 residues upstream from the site at which the C terminus is cleaved. These residues are not conserved in the other three proteins. The 33K C-terminal hydrophobic domain (red boxes) in VacA is thought to form a pore through which the toxin is secreted. The other three proteins show $26-31 \%$ sequence similarity to VacA in this region. The other coloured boxes represent regions of similarity.
cytotoxin ($\sim 26-31 \%$) (Fig. 5). However, they lack the pairedcysteine residues and the cleavage site required for release of the VacA toxin from the bacterial membrane ${ }^{31}$ (Fig. 5). We propose that these proteins may be retained on the outside surface of the cell membrane and contribute to the interaction between H. pylori and host cells.

The surface-exposed lipopolysaccharide (LPS) molecule plays an important role in H. pylori pathogenesis ${ }^{32}$. The LPS of H. pylori is several orders of magnitude less immunogenic than that of enteric bacteria ${ }^{33}$ and the O antigen of many H . pylori isolates is known to mimic the human Lewis ${ }^{x}$ and Lewis ${ }^{y}$ blood group antigen ${ }^{32}$. Genes for synthesis of the lipid A molecule, the core region, and the O antigen were identified. Two genes with low similarity to fucosyltransferases (HP379, HP651) were found and may play a role in the LPS-Lewis antigen molecular mimicry. Our analysis also suggests that three genes, two glycosyltransferases (HP208 and HP619) and one fucosyltransferase (HP379), may be subject to phase variation (Table 3a, b).

As with other pathogens, H. pylori probably requires an ironscavenging system for survival in the host ${ }^{5}$. Genome analysis suggests that H. pylori has several systems for iron uptake. One is analogous to the siderophore-mediated iron-uptake fec system of E. coli ${ }^{34}$, except that it lacks the two regulatory proteins (FecR and FecI) and is not organized in a single operon. Unlike other studied systems, H. pylori has three copies of each of $f e c A$, exbB and exbD. A second system, consisting of a feoB-like gene without feoA, suggests that H. pylori can assimilate ferrous iron in a fashion similar to the anaerobic feo system of E. coli. Other systems for iron uptake present in H. pylori consist of the three frpB genes which encode proteins similar to either haem- or lactoferrin-binding proteins. Finally, H. pylori contains NapA, a bacterioferritin ${ }^{34}$, and Pfr, a non-haem cytoplasmic iron-containing ferritin used for storage of iron ${ }^{35}$. The global ferric uptake regulator (Fur) characterized in other bacteria is also present in H. pylori. Consensus
sequences for Fur-binding boxes were found upstream of two $f e c A$ genes, the three frnB genes and fur.
H. pylori motility is essential for colonization ${ }^{36}$. It enables the bacterium to spread into the viscous mucous layer covering the gastric epithelium. At least forty proteins in the H. pylori genome appear to be involved in the regulation, secretion and assembly of the flagellar architecture. As has bene reported for the flaA and flaB genes, we identified sigma 28 and sigma 54 -like promoter elements upstream of many flagellar genes, underscoring the complexity of the transcriptional regulation of the flagellar regulon ${ }^{5}$.

Acidity, pH and acid tolerance

H. pylori is unusual among pathogenic bacteria in its ability to colonize host cells in an environment of high acidity. As it enters the gastric environment by oral ingestion, the organism is transiently subjected to the extreme pH of the lumen side of the gastric mucous layer ($\mathrm{pH} \sim 2$). The survival of H. pylori in acidic environments is probably due to its ability to establish a positive inside-membrane potential ${ }^{37}$ and subsequently to modify its microenvironment through the action of urease and the release of factors that inhibit acid production by parietal cells ${ }^{5}$. A switch in membrane polarity provides an electrical barrier that prevents the entry of protons $\left(\mathrm{H}^{+}\right)$. A positive cell interior can be created by the active extrusion of anions or by a proton diffusion potential. The latter model appears more likely as no clear mechanism for electrogenic anion efflux is apparent in the genome. A proton diffusion potential would require the anion permeability of the cytoplasmic membrane to be low and, thus far, only three anion transporters have been identified. However, it remains to be determined whether anion conductances are associated with other proteins: the MDR-like transporters (HP600, HP1082 and HP1206) or hypotheticals. Although it has been suggested that proton-translocating P-type ATPases could mediate survival in acid conditions by the extrusion of protons from the cytoplasm ${ }^{38}$, this idea is not supported by the identified transporter

Table 3 Homopolymeric tracts and dinucleotide repeats in H. pylori

HP no.	ID	No. of repeats	Gene status	Poly(A) or Poly (T) tracts in 5^{\prime} intergenic region
9	OMP	11 CT	Off	Poly(A)
208	glycos. transf.	11 AG	Truncated	Poly(A)
638	OMP	6 CT	On	No
722	OMP	8 CT	Off	Poly(T)
725	OMP	6 CT	Off	Poly(T)
744	Hypo	9 AG	Truncated	No
896	OMP	11 CT	On	Poly(A)
1417	Cons. Hypo	9 AG	Truncated	No

Nucleotide sequence at the beginning of HP0722 showing the CT dinucleotide repeat and the poly T tract. The putative ribosome binding site is shown in green. Translation starting at the designated methionine leads to a truncated product. The addition or deletion of two CT repeats, by 'slipped-strand mispairing', will restore the frame.
CCAAAAATCTTTTTTTTTTTTTTTGAAATCCAATAAATTTATGGTAAAGT-37bp-TTTACAATAAAAAAATTACTTTAAGGAACATTT
TATGAAAAAGACAATTCTACTCTCTCTCTCTCTCTCGCTTCATCGCTCTTGCACGCTGAAGACAACGGCTTTTTTGTGAGCGCCGGCT

(b) Homopolymeric poly(C) and poly(G) tracts within coding sequence

(b) Homopolymeric poly(C) and poly(G) tracts within coding sequence	
HP no.	ID
58	Hypo
217	Hypo
379	fucosyl transf.
464	Typel R
619	glycos. transf.
651	Hypo
1353	Hypo
1471	TypellS-R
1522	Methyl ase

Tract length
C15
G12
C13
C15
C13
C13
C15
G14
G12
Gene status
Off
On
On
On
Truncated
On
Truncated
On
Truncated

Genes possibly regulated by homopolymeric poly(A) or poly(T) tracts in 5^{\prime} intergenic regions

HP no.	ID	Tract	HP no.	ID	Tract
9	OMP	A14	25	OMP	T15
227	OMP	T14	228	IMP	A14
350	IMP	A15	547	cagA	A14
722	OMP	T16	725	OMP	T14
876	frpB	T16	896	OMP	A14
1342	OMP	A14	1400	fecA	A16

Tract
A11
T15
T15
T13
T13
genes. The P-type ATPase sequences in H. pylori (copAP, HP791, and HP1503) are more closely related to divalent cation transporters than to ATPases with specificity for protons or monovalent cations. One of them, HP0791, is involved in Ni^{2+} supply, an essential component of urease activity ${ }^{39}$. The others may be involved in the elimination of toxic metals from the cytoplasm and not in pH regulation.

Additional mechanisms of pH homeostasis may well contribute to H. pylori survival. A change in protein content observed in response to a shift of extracellular pH from 7.5 to 3.0 suggests the presence of an acid-inducible response ${ }^{40}$. Although H. pylori lacks most orthologues of the genes that are acid-induced in E. coli and Salmonella typhimurium, including the amino-acid decarboxylases and formate hydrogen lyase, certain virulence factors, outer membrane

Figure 6 Solute transport and metabolic pathways of Helicobacter pylori. Transporters identified by sequence comparisons are characteristc of Gramnegative bacteria. Colours correspond to transport role categories defined by Riley ${ }^{15}$: blue, amino acids, peptides and amines; red, anions; yellow, carbohydrates, organic alcohols and acids; green, cations; and purple, nucleosides, purines and pyrimidines. Numerous permeases (ovals) with specificity for amino acids (recE, proP, dagA, gltS, putP and sdaC) or carbohydrates (SODiTl, gluP, lactP, cduA, kgtP) import organic nutrients. Structurally related permease proteins maintain ionic homeostasis by transporting $\mathrm{HPO}_{4}^{2-}(\mathrm{H} / 1604), \mathrm{NO}_{3}^{2-}$ (narK), and Na^{+}(nhA, napA). Primary active-transport systems, independent of the proton cycle, are also apparent. Included in this group are ATP-binding proteincassette (ABC) transporters (composite figures of 2 diamonds, 2 circles, 1 oval) for the uptake of oligopeptides (oppACD), dipeptides (dppABCDF), proline (proVWX), glutamine (glnHMPQ), molybdenum (modABD), and iron III (fecED), Ptype ATPases that extrude toxic metals from the cell ($\operatorname{cop} A P$ and $\operatorname{cad} A$), and the glutathione-regulated potassium-efflux protein (kefB). Transporters for the accumulation of ionic cofactors are encoded by nixA (Ni^{2+} for urease activation), corA $\left(\mathrm{Mg}^{2+}\right.$ for phosphohydrolases, phosphotransferases, ATPases) and feoB (Fe^{2+}
import under anaerobic conditions for cytochromes, catalase). An integrated view of the main components of the central metabolism of H. pylori strain 26695 is presented. The use of glucose as the sole carbohydrate source is emphasized. Urease, a multisubunit Ni^{2+}-binding enzyme, is crucial for colonization and for survival of H . pylori at acid pH , and is indicated as a complex (purple circle) with Hpn, a $\mathrm{Ni}^{2^{+}}$-binding cofactor, and a newly identified Hpn-like protein (HP1432). A question mark is attached to pathways that could not be completely elucidated. Pathways or steps for which no enzymes were identified are represented by a red arrow. Pathways for macromolecular biosynthesis (RNA, DNA and fatty acids) have been omitted. ackA, acetate kinase; acnB, aconitase B; aspC, aspartate aminotransferase; dld, D-lactate dehydrogenase; gdhA, glutamate dehydrogenase; glnA, glutamine synthetase; gltA citrate synthase; HydABC, hydrogenase complex; icd, isocitrate dehydrogenase; pfl, pyruvate formate lyase; por, pyruvate ferredoxin oxidoreductase; ppc, phosphoenolpyruvate carboxylase; pps, phosphoenolpyruvate synthase; pta, phosphate acetyltransferase; gldD, glycerol-3-phosphate dehydrogenase; NDH-1, NADH-ubiquinone oxidoreductase complex.
proteins, sensor-regulator pairs and other proteins may be acidinduced.

Regulation of gene expression

Bacteria regulate the transcription of their genes in response to many environmental stimuli, such as nutrient availability, cell density, pH , contact with target tissue, DNA-damaging agents, temperature and osmolarity. In the case of pathogens, the regulated expression of certain key genes is essential for successful evasion of host responses and colonization, adaptation to different body sites, and survival as the pathogen passes to new hosts. In H. pylori, global regulatory proteins are less abundant than in E. coli. For example, orthologues of many DNA-binding proteins that regulate the expression of certain operons such as OxyR (oxidative stress), Crp (carbon utilization), RpoH (heat shock), and Fnr (fumarate and nitrate regulation) are absent. Only four H. pylori proteins have a perfect match to helix-turn-helix (HTH) motifs, a signature of transcription factors; a putative heat-shock protein (HspR), two proteins with no database match (HP1124 and HP1349) and SecA, a component of the general secretory machinery. In contrast, 34 proteins containing an HTH motif were found in H. influenzae and 148 in E. coli. We identified several other putative regulatory functions, including SpoT and CstA for 'stringent response' to amino-acid starvation and to carbon starvation, respectively.

Environmental response requires sensing changes and transmission of this information to cellular regulatory networks. Two-component regulator systems, consisting of a membrane histidine kinase sensor protein and a cytoplasmic DNA-binding response regulator, provide a well studied mechanism for such signal transduction. Four sensor proteins and seven response regulators were found in H. pylori, similar to the number found in H. influenzae ${ }^{7}$. This is approximately one third the number found in E. coli which, in contrast to H. pylori and H. influenzae, may be exposed to more environments.

Metabolism

Metabolic pathway analysis of the H. pylori genome suggests the following features. H. pylori uses glucose as the only source of carbohydrate and the main source for substrate-level phosphorylation. It also derives energy from the degradation of serine, alanine, aspartate and proline. The glycolysis-gluconeogenesis metabolic axis constitutes the backbone of energy production and the start point of many biosynthetic pathways. The biosynthesis of peptidoglycan, phospholipids, aromatic amino acids, fatty acids and cofactors is derived from acetyl-CoA or from intermediates in the glycolytic pathway (Fig. 6). The metabolism of pyruvate reflects the microaerophilic character of this organism. Neither the aerobic pyruvate dehydrogenase (aceEF) nor the strictly anaerobic pyruvate formate lyase ($p f l$) associated with mixed-acid fermentation are present. The conversion of pyruvate to acetyl CoA is performed by the pyruvate ferrodoxin oxidoreductase (POR), a four-subunit enzyme thus far only described in hyperthermophilic organisms ${ }^{41}$. The tricarboxylic acid cycle (TCA) is incomplete and the glyoxylate shunt is absent. The analysis of degradative pathways, uptake systems and biosynthetic pathways for pyrimidine, purine and haem suggests that H. pylori uses several substrates as nitrogen source, including urea, ammonia, alanine, serine and glutamine. The assimilation of ammonia, an abundant product of urease activity, is achieved by the glutamine synthase enzyme and α ketoglutarate is transformed into glutamate by glutamate dehydrogenase rather than by the glutamate synthase enzyme.

In H. pylori, proton translocation is mediated by the NDH-1 dehydrogenase and the different cytochromes, including the primitive-type cytochrome cbb3 (Table 2). Four respiratory electron-generating deydrogenases have been identified, glycerol-3-phosphate dehydrogenase (GlpD), D-lactate dehydrogenase, NADH-ubiquinone oxidoreductase complex (NDH-1), and a hydrogenase complex (HydABC). Our analysis also suggests that
H. pylori is not able to use nitrate, nitrite, dimethylsulphoxide, trimethylamine N-oxide or thiosulphate as electron acceptors. Much of our metabolic analysis is supported by experimental evidence ${ }^{41,42}$.

Evolutionary relationships of \boldsymbol{H}. pylori

H. pylori is currently classified in the Proteobacteria, a large, diverse division of Gram-negative bacteria which includes two other completely sequenced species, H. influenzae and E. coli. Given this taxonomic placement, based primarily on 16 S rRNA sequence comparisons, one might expect the proteins of H. pylori more closely to resemble their H. influenzae and E. coli homologues rather than those in other genomes such as Synechocystis sp., M. genitalium, M. pneumoniae, M. jannaschii, and Saccharomyces cerevisae. This is indeed the case for many proteins. There are, however, many examples of H. pylori proteins in amino-acid biosynthesis, energy metabolism, translation and cellular processes that have greater sequence similarity to those found in nonProteobacteria. For example, Dhs1, the initial enzyme in the chorismate biosynthesis pathway is 75.5% similar to Arabidopsis thaliana chloroplast Dhs1 gene product, and has minimal sequence similarity to the equivalent E. coli AroH, AroF or AroG gene products. The remaining enzymes in this pathway have strong sequence similarity to their E. coli counterpart. Similarly, the H. pylori prephenate dehydrogenase (TyrA), which converts chorismate to tyrosine, and six out of 15 enzymes in the aspartate amino acid biosynthetic pathways, resemble those from B. subtilis. A similar pattern can be seen in a different functional category. Nearly all H. pylori tRNA synthetases have eubacterial homologues, mostly with best matches to Proteobacteria species. However, histidyl-tRNA synthetase shows several amino-acid sequence signatures in common with eukaryotic and archaeal (M. jannaschii) homologues.

Such observations of discordant sequence similarity are often interpreted as evidence of lateral gene transfer in the evolutionary history of an organism. It is also possible that H. pylori diverged early from the lineage that led to the gamma Proteobacteria, and retained more ancient forms of enzymes that have been subsequently replaced or have diverged extensively in H. influenzae and E. coli.

Conclusion

Our whole-genome analysis of H. pylori gives new insight into its pathogenesis, acid tolerance, antigenic variation and microaerophilic character. The availability of the complete genome sequence will allow further assessment of H. pylori genetic diversity. This is an important aspect of H. pylori epidemiology as allelic polymorphism within several loci has already been associated with disease outcome ${ }^{5,21,31}$. The extent of molecular mimicry between H. pylori and its human host, an underappreciated topic, can now be fully explored ${ }^{43}$. The identification of many new putative virulence determinants should allow critical tests of their roles and thus new insight into mechanisms of initial colonization, persistence of this bacterium during long-term carriage, and the mechanisms by which it promotes various gastroduodenal diseases.

Methods

H. pylori strain 26695 (ref. 44) was originally isolated from a patient in the United Kingdom with gastritis (K. Eaton, personal communication) and was chosen because it colonizes piglets and elicits immune and inflammatory responses. It is also toxigenic, and transformable, and thus amenable to mutational tests of gene function.
The H. pylori genome sequence was obtained by a whole-genome random sequencing method previously applied to genomes of Haemophilus influenzae ${ }^{7}$, Mycoplasma genitalium ${ }^{8}$, and Methanococcus jannaschii ${ }^{9}$. Ninety-two per cent of the genome was covered by at least one λ clone and only 0.56% of the genome had single-fold coverage.

Open reading frames (ORFs) and predicted coding regions were identified using three methods. The predicted protein-coding regions were initially defined by searching for ORFs longer than 80 codons. Coding potential analysis of the entire genome was performed with a version of GeneMark ${ }^{45}$ trained with a set of H. pylori ORFs longer than 600 nucleotides. Coding sequences and potential starts of translation were also determined using GeneSmith (H.S., unpublished), a program that evaluates ORF length, separation of ORFs and overlap and quality of ribosome binding site. ORFs with low GeneMark coding potential, no database match, and not retained by GeneSmith were eliminated. GeneSmith identified 25 ORFs that are smaller than 100 codons, had no database match and were GeneMark negative. Frameshifts were detected by inspecting pairwise alignments, families of orthologues (similar proteins derived from different species) and paralogues (similar proteins from within the same organism), and regions containing homopolymer stretches and dinucleotide repeats. Ambiguities were resolved by an alternative sequencing chemistry (terminator reactions), and by sequencing PCR products obtained using the genomic DNA as template. Frameshifts that remain in the genome are considered authentic and not sequencing artefacts.

To determine their identity, ORFs were searched against a non-redundant amino-acid database as previously described ${ }^{9}$. ORFs were also analysed using 175 hidden Markov models constructed for a number of conserved protein families (pfam v1.0) using hmmer ${ }^{43}$. In addition, all ORFs were searched against the prosite motif database using MacPattern ${ }^{46}$. Families of paralogues were constructed by pairwise searches of proteins using FASTA. Matches that spanned at least 60% of the smaller of the protein pair were retained and visually inspected.

A unix version of the program TopPred ${ }^{47}$ was used to identify membranespanning domains (MSD) in proteins. Six hundred and sixty three proteins containing at least one MSD were found; of these, 300 had 2 potential MSDs or more. The presence of signal peptides and the probable position of the cleavage site in secreted proteins were detected using Signal-P, a neural net program that had been trained on a curated set of secreted proteins from Gram-negative bacteria ${ }^{48} .367$ proteins were predicted to have a signal peptide. Lipoproteins were identified by scanning for the presence of a lipobox in the first 30 amino acids of every protein; 20 lipoproteins were identified, eighteen of which were Signal-P positive. Outer-membrane proteins were found by searching for aromatic amino acids at the end of the proteins.

Homopolymer and dinucleotide repeats were found by using RepScan (H.O.S., unpublished) which finds direct repeats of any length. All features identified using these programs were validated by visual inspection to remove false positives. Metabolic pathways were curated by hand and by reference to EcoCyc ${ }^{49}$.

Received 16 May; accepted 1 July 1997.

1. Warren, J. R. \& Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273-1275 (1983).
2. Cover, T. L. \& Blaser, M. J. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv. Int. Med. 41, 85-117 (1996) 3. Mobley, H. L. T., Island, M. D. \& Hausinger, R. P. Molecular Biology of Microbial Ureases. Microbiol. Rev. 59, 451-480 (1995).
3. Go, M. F. \& Graham, D. Y. How dos Helicobacter pylori cause duodenal ulcer disease: The bug, the host, or both? J. Gastroentrol. Hepatol. (suppl.) 9, 8-12 (1994).
4. Labigne, A. \& de Reuse, H. Determinants of Helicobacter pylori pathogenicity. Infect. Agents Disease 5, 191-202 (1996).
5. Clemens, J.et al. Impact of infection by Helicobacter pylori on the risk and severity of endemic cholera. J. Inf. Dis. 171, 1653-1656 (1995).
6. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512 (1995).
7. Fraser, C. M. et al. The Mycoplasma genitalium genome sequence reveals a minimal gene complement. Science 270, 397-403 (1995).
8. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058-1073 (1996).
9. Winans, S. C., Burns, D. L. \& Christie, P. J. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 4, 64-68 (1996).
10. Censini, S. et al. Cag, a pathogenicity island of Helicobacter pylori, encodes typeI-specific and diseaseassociated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648-14653 (1996).
11. http://genome.wustl.edu/eddy/low/tRNAscan-SE-Manual/Manual.html
12. Akopyants, N. S., Kersulyte, D. \& Berg, D. E. DNA rearrangement in the 40 kb cag (virulence) region in the Helicobacter pylori genome. Gut 39 (suppl. 2), A67 (1996).
13. Marczynski, G. T. \& Shapiro, L. Bacterial chromosome origins of replication. Curr. Opin. Gen. Dev. 3, 775-782 (1993).
14. Riley, M. Functions of gene products of Escherichia coli. Microbiol. Rev. 57, 862-952 (1993).
15. Kornberg, A. \& Baker, T. A. Replication mechanisms and operations in DNA replication. (ed. Kornberg, A. \& Baker, T.) 471-510 (Freeman, New York, 1992).
16. Macnab, R. M. in Escherichia coli and Salmonella Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 123-145 (ASM, Washington DC, 1996).
17. Strom, M. S., Nunn, D. N. \& Lory, S. Posttranslational processing of type IV prepilin and homologs by PilD of Pseudomonas aeruginosa. Meth. Enzymol. 235, 527-540 (1994).
18. Bardwell, J. C. Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14, 199-205 (1994).
19. Linn, S. in Escherichia coli and Salmonella Cellular and Molecular Biology (eds Neidhardt, F. C.et al.) 764-772 (ASM, Washington D.C., 1996).
20. Peek, R. M., Thompson, S. A., Atherton, J. C., Blaser, M. J. \& Miller, G. G. Expression of iceA, a novel ulcer-associated Helicobacter pylori gene, is induced by contact with gastric epithelial cells and is associated with enhanced mucosal IL-8. Gut 39 (suppl. 2), A71 (1996).
21. Curnow, A. W., Ibba, M. \& Soll, D. tRNA-dependent asparagine formation. Nature 382, 589-590 (1996).
22. Jones, A. C., Foynes, S., Cockayne, A. \& Penn, C. W. Gene cloning of a flagellar sheath protein of Helicobacter pylori shows its identity with the putative adhesin, HpaA. Gut 39 (suppl. 2), A62 (1996).
23. Boren, T., Falk, P., Roth, K. A., Larson, G. \& Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892-1895 (1993).
24. Ilver, D. et al. The Helicobacter pylori blood group antigen binding adhesin. Gut 39 (suppl. 2), A55 (1996).
25. Odenbreit, S., Till, M. \& Haas, R. Optimized blaM-transposon shuttle mutagenesis of Helicobacter pylori allows identification of novel genetic loci involved in bacterial virulence. Mol. Microbiol. 20, 361-373 (1996).
26. Peterson, S. N. et al. Characterization of repetitive DNA in the Mycoplasma genitalium genome: possible role in the generation of antigenic variation. Proc. Natl Acad. Sci. USA 92, 11829-11833 (1995).
27. Moxon, E. R., Rainey, P. B., Nowak, M. A. \& Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24-33 (1994).
28. Jonsson, A. B., Nyberg, G. \& Normark, S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. $E M B O$ J. 10, 477-488 (1991).
29. Tummuru, M. K. R., Sharma, S. A. \& Blaser, M. J. Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol. Microbiol. 18, 867-876 (1995).
30. Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771-17777 (1995).
31. Moran, A. P. The role of lipopolysaccharide in Helicobacter pylori pathogenesis. Aliment. Pharmacol. Ther. 10 (suppl. 1), 39-50 (1996).
32. Baker, P. J. et al. Molecular structures that influence the immunomodulatory properties of the lipid A and inner core region oligosaccharides of bacterial lipopolysaccharides. Infect. Imтип. 62, 2257-2269 (1994).
33. Earhart, C. F. in Escherichia coli and Salmonella Cellular and Molecular Biology (eds Neidhardt, F. C.et al.) 1075-1090 (ASM, Washington DC, 1996).
34. Evans, D. J. Jr, Evans, D. G., Lampert, H. C. \& Nakano, H. Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilism, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 153, 123-127 (1995); Frazier, B. A. et al. Paracrystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. J. Bacteriol. 175, 966-972 (1993).
35. Suerbaum, S. The complex flagella of gastric Helicobacter species. Trends Microbiol. 3, 168-170 (1995).
36. Matin, A., Zychlinsky, E., Keyhan, M. \& Sachs, G. Capacity of Helicobacter pylori to generate ionic gradients at low pH is similar to that of bacteria which grow under strongly acidic conditions. Infect. Iттип. 64, 1434-1436 (1996).
37. Melchers, K. et al. Cloning and membrane topology of a P type ATPase from Helicobacter pyroli. J. Biol. Chem. 271, 446-457 (1996).
38. Melchers, K. et al. Cloning and analysis of two P type ion pumps of Helicobacter pylori, a cation resistance ATPase and a membrane pump necessary for urease activity. Gut 39 (suppl. 2), A67 (1996).
39. McGowan, C. C., Cover, T. L. \& Blaser, M. J. Helicobacter pylori and gastric acid: biological and therapeutic implications. Gastroenterology 110, 926-938 (1996).
40. Hughes, N. J., Chalk, T. L., Clayton, C. L. \& Kelly, D. J. Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate:flavodoxin oxidoreductase from Helicobacter pylori. J. Bacteriol. 177, 3953-3959 (1995).
41. Mendz, G. L. \& Hazell, S. L. Aminoacid utilizaiton by Helicobacter pylori. Int. J. Biochem. Cell. Biol. 27, 1085-1093 (1995).
42. Sonnhammer, E. L. L., Eddy, S. R. \& Durbin, R. Pfam: A comprehensive database of protein families based on seed alignments. Proteins (in the press).
43. Akopyants, N. S., Eaton, K. A. \& Berg, D. E. Adaptive mutation and co-colonization during Helicobacter pylori infection of gnotobiotic piglets. Infect. Immun. 63, 116-121 (1995).
44. Borodovsky, M., Rudd, K. E. \& Koonin, E. V. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome. Nucleic Acids Res. 22, 4756-4767 (1994).
45. Fuchs, R. MacPattern: protein pattern searching on the Apple MacIntosh. Comput. Appl. Biosci. 7, 105-106 (1991).
46. Claros, M. G. \& von Heijne, G. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10, 685-686 (1994).
47. Nielsen, H., Engelbrecht, J., Brunak, S. \& von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6 (1997).
48. Karp, P. D., Riley, M., Paley, S. M., Pellegrini-Toole, A. \& Krummenacker, M. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 25, 43-51 (1997).
49. Doig, P., Exner, M. M., Hancock, R. E. \& Trust, T. J. Isolation and characterization of a conserved porin protein from Helicobacter pylori. J. Bacteriol. 177, 5447-5452 (1995).

Acknowledgements. D.E.B., M.B. and W.H. are supported by grants from the NIH; P.K. is supported by a grant from the National Center for Research Resources. We thank N. S. Akopyants for preparing high quality chromosomal DNA from H. pylori strain 26695; M. Heaney, J. Scott, A. Saeed and R. Shirley for software and database support; and V. Sapiro, B. Vincent, J. Meehan and D. Mass for computer system support.

Correspondence and requests for materials should be addressed to J.-FT. (e-mail: ghp@tigr.org). The annotated genome sequence and gene family alignments are available on the World-Wide Web site at http://www.tigr.org/tdb/mdb/hpdb/hpdb.html. The sequence has been deposited with GenBank under accession number AE000511.

Table 2．List of \boldsymbol{H} ．pylori genes with putative identifications．Gene numbers correspond to those in Fig．1．Each identified gene has been assigned a putative role category adapted from ref．15．Percentages represent per cent identities．

AMINO－ACID BIOSYNTHESIS			HP0841	pantothenate metabolism flavoprotein（dff） 31.3%		HP0855	alginate O－acetylation protein（algl） CMP－N－acetylneuraminic acid synthetase （neuA）	$\begin{aligned} & \hline 41.8 \% \\ & 31.9 \% \end{aligned}$	
General	hydantoin utilization protein A （hyuA）		Pyridoxine			0326			
Aromatic amino－acid family		28．6\％	HP1583	pyridoxal phosphate biosynthetic protein A（pdxA） pyridoxal phosphate biosynthetic protein J （pdxJ）	34．2\％	HP0230	CTP：CMP－3－deoxy－D－manno－octulosonate－ cytidylyl－transferase（kdsB）		
		99.4% 3819	P1582						
$\begin{aligned} & \text { HPO283 } \\ & \text { HPO } \end{aligned}$	oquinate synthase（aroB）		HP1582		42．6\％	$\begin{aligned} & \text { HP1392 } \\ & \text { HPO379 } \end{aligned}$HPO651	fibronectin／fibrinogen－binding protein fucosyltransferase fucosyltransferase	35.2%	
	deoxy－D－arabino－heptulosonate	54．6\％	Ribo					\％	
HP0401	3－phosphoshikimate			ehydrolase \｜｜／3，4－dihydroxy－2－butanone			lipid A disaccharide synthetase（ 1 pxB ） lipopolysaccharide 1，2－glucosyltransferase （ta）	32．0\％	
	1 －carboxyvinytransferase（aroA）	53．6\％	HP0804			HP0159			
	ranilate isomerase（trpC）				${ }^{43.09 \%}$			28．9\％	
HP1280	anthranilate synthase component 1（trpe） anthranilate synthase component \mid（trpD）	${ }_{4}^{4.95 \%}$	HP1087	oflavin biosynthesis regulatory protein		HP0208	lipopolysaccharide 1，2－glucosyltransferase （rfa）		
HP1281	anthranilate synthase component II（trpD）	40．2\％			28．9\％	HP0805			
HP0663HP1380	aroc）		HP1574	riboflavin synthase alpha subunit（ribC）			lipooligosaccharide 5 G 8 epitope biosynthesis－		
	se			nibolavin synthase bela chain（niob）		HP0826	lipooligosaccharide 5 G 8 epitope biosynthesis associated protein（lex2B） lipolysaccharide 12 －alucosytranserase		
$\begin{array}{r} \text { HP P1249 } \\ \hline \end{array}$	ogenase		xin，	，					
HP1277	shikmic acid kinase（（aro）			gamma－gutamytranspeptidase（ggt）		HP1416			
HP1278	tryptophan synthase，beta subunit（trpB）	66．1\％	P824	doxin	51．5\％	H0679		29．2\％	
Aspartate family		55．5\％	P1164	thioredoxin reductase（trB）		P0679		42．8\％	
HP0649	aspartate ammonia－lyase（aspA）		Thiamine	thiamin biosynthesis protein（thiF） thiamin phosphate pyrophosphorylase／ hyroxyethythiazole kinase（thiB） thiamin phosphate pyrophosphorylase／ hyroxyethythiazole kinase（thiM） thiamine biosynthesis protein（thi）	34．6\％	HP1	lipopolysaccharide core biosynthesis protein （kdtB）		
	(asd)	45．7\％	HP0843			HP0279			
$\begin{aligned} & \text { HP1229 } \\ & \text { HPOOO6 } \\ & \text { HPO290 } \end{aligned}$	aspartokinase（lysC）48．0\％				35．7\％			31．7\％	
	cystathionine gamma－synthase（	47．7\％	HP0845		379\％	HP0619	opolysacharide biosynthesis glycosyl		
	（dap decarboxylase）（IysA）	42．7\％	HP0844		4．0\％	$\begin{aligned} & \text { HP1105 } \\ & \text { HP } 578 \\ & H P 581 \\ & \text { HPPO857 } \\ & \text { HP1275 } \end{aligned}$	LPS biosynthesis protLPS biosyntesis proter	$28.79 \%$$28.1 \%$	
HP0566 HP0510 HP1013 HP0822 HP1050 HP0672	diaminopimelate epimerase（dapF）	\％	Pyridine nuc HP0329 HP1355	cleotides					
	dihydrodipicoolinate reductase（dapB）	${ }^{95.3 \%}$			37．5\％				
	dihydrodipicolinate synthetase（dapA） homoserine dehydrogenase（metL）	${ }^{39.7}{ }^{39 \%}$		cotinate－nucleotide pyrophosphorylase			oheptose isomerase（gmhA）		
	homoserine kinase（thrB）	27．7\％	HP1356	quinolinate synthetase A （ nadA ）	34．2\％		seudomonas aeruginosa）	39．6\％	
	solute－binding signature and mitochondrial signature protein（aspB）	4．3\％				HP1429	olysialic acid capsule expression protein	46．0\％	
HP0212	ciny－diaminopimelate desuccinylase		Cull	Lo			at polysaccharide b biosynthesis		
	（dapE）	．3\％		proteins and porins			protein C ${ }^{\text {c }}$	35．3\％	
HP0626	tetrahydrodipicolinate N －succinyltransfera （dapD）		P0180	olipoprotein N －acyltransierase（cute）		PP0178	pore coat polysaccharide biosynthesis		
HP0098	threonine synthase（thrc）	32．9\％	（175	cell binding factor 2		HP0421	e 1 capsular polysaccharide biosyn		
Glutamate fa								\％	
HPO380	amate dehydrogenase（gatA）	${ }^{59.0 \%} 4$	456	brane－associated lipoprotein（Ipp20）	\％	0196	P－3－－（3－hydroxymyristoy）glucosamin	39．5\％	
HP1158	pyrroine－5－carboxylate reductase（proc）	28．9\％		membrane pro		HP1052	－3－－acyl／ N －acetylglcosamine deace		
Pyruvate family			HP0324	ter membrane protein（omp10）	0．0\％		nva）	44.	
HP0941	alanine racemase，biosynthetic（arr）	32．4\％	HP0472	outer membrane protein（omp11）	99．5\％	HP1375	UDP－N－acetyl glucosamine acyltransterase	\％	
	inotransferase（ivkE）	63．5\％		outer membrane protein（ompl3）	0.09	Surface structures			
нроззо	keto－－acid reductoisomerase（ivC）	48．1\％	HP0671	outer membrane protein（omp14）	36.	HP0840	flaA1 protein	60．2\％	
srine family			HP0706	outer membrane protein（omp15）			flagellar basal－body L－ring protein（fis		
	eine synthetase			outer membrane protein（ompl6）	43.39	HP0351	flagelar basa－body M－ring protein（lili）	34．4\％	
HP0096	hoglycerate dehydrogenase		P0796	outer	－	HP1557	flagellar ba	377．0\％	
仿 397	sphoglycerate dehydrogenase（serA）	${ }_{3}^{32.59 \%}$	896	outer m	36．6\％	HP1559	flagellar basal－body rod protein（flgB）		
662	osphoserine phosphatase（serB）	36．5\％					al rod prote	\％	
			HP0912	outer membrane protein（omp20）	0.09	HP1558	flagellar basal－body rod protein（figC）		
183	ine hydroxymethytransferase（glyA）	54．0\％	HP0923	－outer membrane protein（om	0．0	92	flagellar basal－body rod protein（flgG）	35．5\％	
BIOSYNTHESIS OF COFACTORS，PROSTHETIC GROUPS， AND CARRIERS			P1107	outer			flagellar basal－body rod protein（figG）		
				outer m			flagellar biosynthesis prote		
General	synthesis of（Fe－S］duster	48．0\％	HP1157	outer membrane protein	23	HP068	flagellar biosynthesis protein（if	43．4\％	
			HP1177	outer membrane protein（omp2	37．0\％	HP077	flagellar biosynthetic protein（finB）	38．7\％	
Biotin HP0598 HP097			243	outer membrane protein（omp28）			flagellar biosynthetic protein（tiliP）		
	nino－7－0xononanoate synthase			tein（o			flagellar biosynthetic protein（filiq）	2．3\％	
	losylmethionine－8－amino－7－0xononan			nembrane protein（omp			agellar biosynthetic protein（tilik）		
P114	biotin operoron repressor／biotin acetyl coen	eyme	HP ${ }_{\text {HP149 }}$	outer membrane protein outer membrane protein	${ }_{0}^{0.009}$	HP142		${ }^{29.19 \%}$	
	A carboxylase synthetase（birA）	36．9\％	HP1501	outer membrane protein（omp3	0．0\％	HP0870	flagellar hook（flgE）	98．9\％	
HP0407 HP 1254 HP0029	biotin sulfoxide reductase（bisC）	42．7\％		out	0.09			30．5\％	
	，		HP0227	outer membrane protein（ompa			flagellar hook－associated protein 1		
	biotin synthetase（bioB）	${ }^{36.2 \%}$		membrane proteín				27．6\％	
Folic acid HP1036				－			lagelar hook－associated proteín 2		
	7，8－dihydro－6－hydroxymethylpter		${ }_{H}$	－outer membrane protein（ompg）	${ }_{36.3 \%}$	HP0816	flagellar motoror roatation protein（ motB）	${ }^{3.9 .9 \%}$	
	phosphokinase（folk）			outer membrane protein P1（ompP1）	23．3\％		硣	\％	
$\begin{aligned} & \text { HPO587 } \\ & \text { HP P1232 } \\ & \text { HP1545 } \\ & \text { HPO928 } \\ & \text { HPO577 } \end{aligned}$	nodeoxychorismate lyase（pabC）		HP0955	prolipoprotein diacylglyceryl transferase（Igt）	｜34，4	HP 1031	flagellar motor swith protein（fliM）	4．4\％	
	droperoate synhthase fliop）	${ }_{35.2 \%}^{34.5 \%}$	${ }_{\text {HPP157 }}$	protective surface antigen ${ }^{\text {a }}$（ree lipoprotein $($（ripa）	${ }_{3}^{27.7}$	HP	flagellar protein G（flaG）	23．3\％	
	GTP cyclohydrolase I（ fole）	50．9\％	HP0610	toxin－like outer membrane protein	26．3\％	HP079	flagellar sheath adhesin hpaA	${ }^{98.5 \%}$	
	ylene－tetrahydrofolate dehydrogenase			outer membrane proté			flagellar switch protein（filiN）		
HP0293	para－aminobenzoate synthetase（pabB）	35．1\％				HP011	flagellin B （flaB）	99．0\％	
$\begin{aligned} & \text { Heam an } \\ & \text { HPO } \end{aligned}$			HP0830	nidase	40．6\％	HPO295	flagellin B homologue（fla）	32．9\％	
	evulinic acid dehydratas		0738	D－alanine：D－alanine ligase A（ddA）	28.	HP1030	tilis protein（fili）		
HP0376HP0306		50．59\％	0072	de facemase	${ }^{36.68}$	HP090	Hook assembly protein，flagella（figD）	25．5\％	
	glutamate－1－semialdehyde 2．1－aminomutase		HP0597		33．7\％	HP1274	paralysed flagella protein（pflA）	23．9\％	
	（hemL）			binding protein 2 （pbp2）		HPP751 HP0410	nding	21．9\％	
$\begin{aligned} & \text { HPO239 } \\ & \text { HP0665 } \end{aligned}$	oxygen－independent coproporphy			（om	42．6\％		haemagglutinin homologue（hip	24．29\％	
	oxidase（hemN）	42．4\％	HP0493	ho－N－acetylmuramoy－pentapeptide			secreted protein involved in		
HP1226	oxygen－independent coproporphyrinogen III			sterase（mraY） shapedetermining protein（mr	${ }^{45.7 \% \%}$	HP0232	secreted protein involved in flagellar motility	99．2\％	
HP0237 HPO381 HP1224	－${ }^{\text {oxicase }}$ porbhilininegen deaminase（hemC）	45．7\％	HP1733	rod shape－dedeermining protein（mreB）	51．9\％				
	protoporphyrinogen oxidase（hemk）	35．9\％	HP1372	rod shape－determining protein（mreC）	33．6\％	CELLULA	PROCESSES		
	Uroporphyyrinogen III cosyntthase（hemD）	27．6\％	HP1543	tox－－activated gene（tagE）	37．2\％	HP0019	chemotaxis protein（cheV）	26．8\％	
Menaquin HP1360	ne and ubiquinone		HP1544	toxR－activated gene（tagE）	31．2\％	HPO393	（heV）	7\％	
	4－hydroxybenzoate octaprenyltransferase （ubiA）			（transterase，peptidoglycan synthes	28．2\％	${ }_{\text {HPP } 10667}$	chemotaxis protein（chev） chemotaxis protein（（heY）	27．9．9\％ 9.9	
HP0929HPO240	geranyltranstransferase（ispA）	39．8\％	HP074	UDP－MurNac－pentapeptide presynthetase	257\％	17	${ }_{\text {GTP－binding protein（era）}}^{\text {haemolysin }}$	\％	
	octaprenyl－diphosphate synthase（ispB）			UDP－MurNac－tripeptide synthetase（murE）	36．0\％	HP1086	Haemolysin（ty）	40．2\％	
Molybdopterin			HP1418	UDP－N－acetylenolpyruvoyIglucosamine		HP0599	haemolysin secretion protein precursor		
HP0798	dein A（moaA）		HP0648	UDP－N－acetylglucosamine enolpyruy		HP0392	histidine kinase（cheA）	41．4\％	
	aC）	97．9\％		isferase（murz）	46．7\％	¢0099	ing chemotaxis protein（tipA）	3．8\％	
HP0172 HP0755 HP0799	olybdopterin biosynthesis protein（moeA）	3\％	0623	UDP-N-a-d	37．3\％	HPOO82	methyl－accepepting chemotaxis transducer		
	lybdopterin biosyntesis protein（moeB）	50．8\％	HP0494	UDP－N－acetylmuramoylalanine－D－glutamate ligase（murD）	3118	HP0391	（tlpC）	$\begin{aligned} & 28.2 \% \\ & 34.3 \% \end{aligned}$	
HP0800	molybdopterin converting factor，subunit 1 （moaD）		Surface poly	ysaccharides，lipopolysaccharides and antige		Cell divis			
	molyddopterin converting factor，subunit 2		HP0003	3－deoxy－d－mano－octulosonic acid 8－ph		HP	cell division inhibitor（minD）	50．2\％	
HP0769		31.19		－		（1）0979	俍ein（th		
	molybdopterin－guanine dinucleotide biosynth	thesis	HP0957		${ }_{35.96}$	${ }_{\text {HPP0748 }}$	cell ${ }^{\text {coll division }}$ proteien（ （tsA）	37．6\％	
Pantothen			HPP858	ADP－heptose synthase（ffaE）	40．6\％	HP0286	cell division protein（tist）	${ }^{41.2 \%}$	
HP1058	3－methyl－2－oxobutano	se		（frae） ADP－heptose－lps heptosytransterase II	33．2\％	${ }_{\text {HPP1556 }}$	cell division protein（（tsil）	－${ }_{\text {30．6\％\％}}$	
HPOO34HP0006	ara）	${ }_{50.0 \%}^{43.7 \%}$	HP0859	ADP－L－glycero－D－mannoheptose－6－epimera		090	（tsk）	39．8\％	
	toate－beta－alanine ligase（panC）	2\％				HP0763	cell division protein（ftsY）	46．6\％	

	(devB) ${ }^{\text {a }}$ (${ }^{\text {a }}$	
1101	glucose-6-phosphate dehydrogenase	
	saldolase (tal)	\%
1088	transketolase A (kkA)	\%
HP0354	transketolase B	
Sugars		
HP0574	galactosidase acetyltransferase (lacA)	4.0\%
0360		
TC		
	aconitase B (ad	
026	citrate synthase (g)	478\%
HP1325	fumarase (fumC)	7\%
HP0509	glycolate oxidase subunit (gic	\%\%
0027	isocitr	
FATTY A	HOSPHOLIPID	
General		
HP1376	(3R)	
HP1348	1 -acy-glycerol-3-phosphate acyltransferase	
HP0690	ac	
0950	acety-CoA carb	
HP1045	acety-COA synthetase (acoE)	
5559	acyl carrie	55.3\%
0962	acyl carrie	3\%
HP0558	beta	
HP0202	beta-ke	
	ydrolase	
215	CDP-diglyceride synthetase (cdsA	42.4\%
	cy	7\%
HP0700	diac	45.8\%
0195	enoyl-	
HP0808	Holo-acp synthase (acpS)	
HP0090	malonyl coenzyme A-acyl carrier	
		35.49/1
HP1357		
		33.2\%
HP1071		6\%
HP0499		
	(DR-phospholipase A) 3	33.8
RINES	YRIMIIINES, NUCLEOSIDES AND NUCLEO	
0757	beta-alanine synthetase homologue	
20-Deox	bonucleotide metabolism	
HP0372	deoxycytidine triphosphate deaminase	
HP0865	deoxyuridine 50 -triphosphat	
	rdB)	
HP0680		
HP0825	thioredoxin reductase (trxB)	
HP0321	50.guanylate kinase (gmk)	.8\%
0618	adenylate kinase (adk)	
HP1112	adenylosuccinate lyase (purB)	
	adenylosuccinate synthetase (purA)	
1218	glycinamide ribonucleotide synthetase	
	GMP synthase (guaA)	56.1\%
HP		
		${ }_{6}^{58.7 \% \%}$
0742		
1530	purine nucleoside phosphorylase (pun	
Pyrimidin	ribonucleotide biosynthes	
HP1084		38.7
HP0919	carbamoy-phosphate synthase (glutamine-	
	(pyrAb)	
HP1237	carbamoyl-phosphate synthetase (pyrAa)	39.7\%
	CT	50.7\%
226		-1.0\%
5881	dihydroorotase (pyrc)	
1011	dihydroorotate dehydrogenas	
HP1257	orotate phosphoribosyltransferase (pyr	35.5\%
HP0005	orotidine 50 -phosphate deca	
HP1474		33.9\%
HP0777	uridine 50-monophosphate (U)	
	(pyrH)	50.4
Salvage		
HP0104	D,30-yclic-nucleotide 20-phosphodiesterase (cpdB)	
	enine	
179	phosphopentomutase (deo	55.99
HP1178	purine-nucleoside phosphorylase (deoD)	55.5\%
HP0735	xanthine guanine phosphoribosyl tra	
	(gpt)	
arar	otide biosynthesis and conversions	
043	mannose-6-phosphate isomerase (pmi) or	
	nodulation protein (nolk)	3\%
	UDP-glucose pyrophosphorylase (ga	
HP0683	UDP-N-acety/glucosamine pyrophos	
REGULAT	RY P	
General		
HP1032	alternative transcription initiation fa	
	(fiA)	34.6% 5989
	carbon	
027	ferric	39.9
HP0278	guanos	
HP0400	penicillin tolerance protein (lytB)	30.

Cations HP0791	cadmium－transporting ATPase，P－type	HP0258	served hypothetical integral memb tein	32．7\％
HP0969	\％		eve	
1328	cation efflux system protein（czzA）${ }^{\text {a }}$	HP0362	erved hypothetical integral membr	
1329	cation efflux system protein（czcA）31．3\％		protein	28．3\％
HP1503	cation－transporting ATPase，P－type（copA）30．3\％	HP0415	conserved hypothetical integral membrane	
1073	copper ion binding protein（copp）$\quad 92.4 \%$		prote	44．4\％
HP1072	copper－transporting ATPase，P－type（copA）93．9\％	HP0467	gral	
HP0471	glutatione－regulated potassium－efl		prote	100.0
HP0687		HP0571	conserv	29．5\％
HP1561	iron（III）ABC transporter，periplasmic iron－ binding protein（ceuE）	HP0644	conserved hypothetical integral membra protein	30．3\％
HP1562	iron（III）$A B C$ transporter，periplasmic iron－ binding protein（ $\mathrm{Ce日L} \mathrm{E}$ ）	HP0677	conserved hypothetical integral membran	
HP0888	iron（III）dicitrate ABC transporter，ATP－bind	HP0693	conserved hypothetical integral membran	
HP0889	iron（III）dicitrate ABC transporter，permease protein（fecD）	HP0718	conserved hypothetical protein	33．5\％
HP0686	iron（III）dicitrate transport protein（fecA）29．79\％	HP0737	conserved hypothetical integral membra	
HP0807	${ }_{\text {2 }}^{28.59 \%}$			
HP 1400 HP1344	iron（III）dicitrate transport protein（fecA）26．3\％ magnesium and cobalt transport protein	HP075	conserv protein	47．6\％
	（0）	HP0759	conserved hypothetical integral membran	
	NA＋M1＋antiporter（napa）			
		HPO		
${ }_{\text {HPO490 }}$	nickel transport protein（nixA）98．900			
	putative 25.7%		pros	37．3\％
Nucleos	s，purines	HP0920	d hypothetical integral mem	
290	nicotinamide mononucleotide transporter （pnuC）	HP0946	erved hypothetical integral memb	
180	pyrimidine nucleoside transport protein （nupC）	HP0952	protein conserved hypothetical integral	35.9
Other		HP0983	protein	38．5\％
	gulated outer membrane protein		protein	32．8\％
HP0915	irron－regulated outer membrane protein	HP1044	aserved hypothetical	
	28．1\％	HP1061	erved hypothetical integral membra	
	28．8\％		protein	35．0\％
1129	polymer transport protein（exbD）29．7\％	HP1080	nserved hypothetical integral membran	
	polymer transport pro	HP1162	conserved hypothetical integral membra	
HP1339	biopolymer transport protein（exbB）$\quad \begin{aligned} & 46.8 \% \\ & \text { bioply }\end{aligned}$			27．6\％
${ }_{445}$		HP1175	erved hypothetical integral membra	
HP1446	biopolymer transport protein（exbD） 36.2%			
HP1512	iron－regulated outer membrane protein		protein	23．5\％
HP0653	aining ferritin（pfr）${ }_{99.46}^{20.4}$	HP1185	conserved hypothetical integral membran	
1341	siderophore－mediated iron transport protei			
			en	\％
HER	GORIES	HP1234	conserved hypothetical integral membran	
General		HP1235	conserved hypothetical integral membrane	
HP0924	4－oxalocrotonate tautomerase（dmpl）37．7\％		protein	30．9\％
HP1034	ATP－binding protein（ylxH）	HP1330	conserved hypothetical integral membrane	
HP1139	Spooj regulator（soj）47．4\％			
HP0827	ss－DNA binding protein 12RNP2 precursor 46．8\％		erved hypothetical	
Adaptatio	and atypica	HP1343	conser	
	eral stress protein（cto）${ }^{\text {a }}$ 26．5			
HP1483	gerC2 protein（gerC2）33．3\％	HP1363	served hypothetical integral membra	
HP0927	neat shock protein（htpx）${ }^{323.8 \%}$		protein	33．1\％
	heat shock protein B（ibpB）			
	invasion protein（invA）38．2\％			
0970	nickel－cobalt－cadmium resistance protein （ nccB ）	HP1466	conserved hypothetical integ protein	\％
HP1444	small protein（smpB）42．1\％	1484	served hypothetical integral mem	
（1）	Stationary－phase survival protein（surE） 37.79			\％
	associated protein D（vapD）$\quad{ }^{70.2 \%}$		chen hypheral hegra merane	
$H P 0967$ HP1248	virulence associated protein D（vapD）28．9\％ virulence associated protein homolog	HP1487	ved hypothetical integral membrane	23．8\％
	（vacB） 36.0%		protein	30．7\％
HP0885	virulence factor mviN protein（			
Colicin－r	ed functions			
$\begin{aligned} & \text { HP1126 } \\ & \text { HP0428 } \end{aligned}$	colicin tolerance－like protein（tolB） phage／colicin／tellurite resistance cluster $\quad 25.7 \%$	HP1548	conserved hypothetical integral m protein	30．6\％
	tery protein 25.6	HP0138	conserved hypothetical iron－sulfur pro	
Drug an	nalog sensitivity		othetical membrane protein	
	16 rRNA（adenosine－N6，N6－）－dimethyl－ transferase（ksgA）	HPO575	conserved hypothetical membrane protein	38．8\％
HP0606	membrane fusion protein（mtrC）\quad 24．2\％		conserved hypotheical mitochonaria	
	dulator of drug activity（mdab6）	HP149		
1476	phenylacrylic acid decarboxylase	HPооз2	conserved hypothetical protein	370\％
	putative 27.0%			
	－related functions		conserved hypotheticalal protein	
HP1008	IS200 insertion sequence from SARA17 33．9\％	HP0100	俍 protein	32．0\％
HP0414	15200 insertion sequence from SARA17 $\quad 33.9 \%$	HP0102	conserved hypothetical protein	29．3\％
9988	IS605 transposasase（tnpA）		tein	． 7 \％
HP1096	IS605 transposase（tnpA）97．2\％	HPO1	consenved hypothetical protein	
1535	15605 transposase（tnpA）97．2\％	HP0216	cal protein	33．9\％
HP0437		HPO233	conserved hypothetical protein	30．5\％
90999	$1 \mathrm{S605}$ transposase（tnpB）${ }^{\text {a }}$	HPP248	served hypothetical protein	30．79\％
1095		HPO274	onserved hypothetical	${ }^{38.5 \%}$
HP1534	IS605 transposase（tnpB）93．4\％	HP0309	oonserved hypotheitical protin	313\％
0438	IS605 transposase（tnpB）$\quad 93.4 \%$	HP0310	conserved hypothetical protein	33．7\％
HP0413	transposase－like protein，PS315 ${ }^{33.6 \%}$	HP0318	conserved hypothetical prot	47．2\％
HP1007	transposase－like protein，PS31S 34．3\％	HPO328		30．7\％
Other		HPO334	conserved hypothetical protein	
	2－hydroxy－6－oxohepta－2，4－dienoate hydrolase 30．1\％	${ }_{\text {HPPO347 }}$	in	${ }^{31.89 \%}$
		HP0374	conserved hypothetical	24．7\％
YPOT	ICA	88	conserved hypothetical protein	退8\％
General	conserved hypothetical ATP binding protein 32．3\％ conserved hypothetical ATP－binding protein 34．7\％ conserved hypothetical ATP－binding protein 37．7\％ conserved hypothetical ATP－binding protein 34．1\％ conserved hypothetical ATP－binding protein 30．8\％ conserved hypothetical ATP－binding protein 38．1\％ conserved hypothetical ATP－binding protein 51．6\％ conserved hypothetical ATP－binding protein 40．9\％ conserved hypothetical helicase－like protein 35.2% conserved hypothetical integral membrane protein	HP0395		${ }^{39.9 \%}$
${ }^{\text {HPO}} \mathbf{H} 31$			conserved hypothetical protein	
HPPoz69		HP0447	conserved hypothetical protein	38．2\％
HP0312		HP046	conserved hypothetical protit	95．5\％
方21		HP046	conserved hypotheitical pro	
1507		HP0469	conserved hypothetical prot	95．1\％
HP1567		HP0496	hypothetical protein	99．2\％
		HP0519	conserved hypoteterical proten	${ }_{9} 9.23 \%$
189		HP0553	conserved hypothetical protein	30．0\％
	protein 43.1%		conserved hypothetical protein	
226	conserved hypothetical integral membrane protein	HPO656	conserved hypotierical conserved hypothetical	${ }_{\text {36．0\％}}$
HP0228	conserved hypothetical integral membrane	HP0707	conserved hypothetical protein	1\％
	${ }^{\text {protein }}$ consenved hypothetical integral membrane ${ }^{43}$	${ }_{\text {HPPO710 }}$	conserved hypothetical protein	${ }_{3}^{49.7 \%}$
		HP0716	conserved hypothetical pip	30．2\％

HP0728	conserved hypothetical protein	29.3
HP0734	conserved hypothetical protein	31.0
HP0741	conserved hypothetical protein	30.29
HP0745	conserved hypothetical protein	33.79
HP0747	conserved hypothetical protein	32．49
HP0760	conserved hypothetical protein	36.19
HP0810	conserved hypothetical protein	1．0
HP0813	conserved hypothetical protein	32.5
HP0823	conserved hypothetical protein	
HP0860	conserved hypothetical protein	52.19
HP0890	conserved hypothetical protein	
HP0891	conserved hypothetical protein	33.8
HP0892	conserved hypothetical protein	
HP0894	conserved hypothetical protein	
HP0926	conserved hypothetical protein	30.7
HP0934	conserved hypothetical protein	
HP0956	conserved hypothetical protein	36.2
HP0959	conserved hypothetical protein	31.14
HP0966	conserved hypothetical protein	29.14
HP0975	conserved hypothetical protein	25.0
HP1020	conserved hypothetical protein	
HP1037	conserved hypothetical protein	
HP1046	conserved hypothetical prote	
HP1049	conserved hypothetical protei	39.7
HP1066	conserved hypothetical protein	41.36
HP1149	conserved hypothetical protein	24.7
HP1160	conserved hypothetical protein	34.7
HP1182	conserved hypothetical protein	34.6
HP1214	conserved hypothetical prote	21.5
HP1221	conserved hypothetical protein	42.4
HP1240	conserved hypothetical prote	22.5
HP1242	conserved hypothetical protein	42.3
HP1259	conserved hypothetical protein	
HP1284	conserved hypothetical protein	
HP1291	conserved hypothetical prote	
HP1335	conserved hypothetical prote	33.9
HP1337	conserved hypothetical prot	
HP1338	conserved hypothetical prote	36.2
HP1394	conserved hypothetical prote	
HP1401	conserved hypothetical prote	27.5
HP1413	conserved hypothetical protein	
HP1414	conserved hypothetical protein	27.4
HP1417	conserved hypothetical protein	
HP1423	conserved hypothetical prot	
HP 1426	conserved hypothetical prote	40.0
HP1428	conserved hypothetical prot	
HP1443	conserved hypothetical prote	37.9
HP1449	conserved hypothetical prote	
HP1453	conserved hypothetical protein	26.8
HP1459	conserved hypothetical prote	30.1
HP1504	conserved hypothetical prote	
HP1510	conserved hypothetical prote	30.6
HP1533	conserved hypothetical prote	
HP1570	conserved hypothetical protein	40.5
HP1573	conserved hypothetical protein	42.2
HP1587	conserved hypothetical protein	39.0
HP1588	conserved hypothetical prot	32.0
HP1589	conserved hypothetical prote	
HP0713	conserved hypothetical protein （plasmid pHPM180）	
HP0028	conserved hypothetical secreted protein	
HP0160	conserved hypothetical secreted protein	30.6
HP0190	conserved hypothetical secreted protein	31.4
HP0211	conserved hypothetical secreted protein	24.3
HP0235	conserved hypothetical secreted protein	31.5
HP0257	conserved hypothetical secreted protein	29.2
HP0320	conserved hypothetical secreted protein	
HP0506	conserved hypothetical secreted protein	
HP0518	conserved hypothetical secreted protein	
HP0785	conserved hypothetical secreted protein	
HP0949	conserved hypothetical secreted protein	39.7
HP0977	conserved hypothetical secreted protein	29.4
HP0980	conserved hypothetical secreted protein	57.4
HP1075	conserved hypothetical secreted protein	42.9
HP1098	conserved hypothetical secreted protein	
HP1117	conserved hypothetical secreted protein	
HP1216	conserved hypothetical secreted protein	
HP1285	conserved hypothetical secreted protein	
HP1286	conserved hypothetical secreted protein	37.5
HP1464	conserved hypothetical secreted protein	27.4
HP1488	conserved hypothetical secreted protein	29.8
HP1551	conserved hypothetical secreted protein	
UNKNOV		
General		
HP0390	adhesin－thiol peroxidase（tagD）	38.3
HP1193	aldo－keto reductase，putative	46.6
HP0872	alkylphosphonate uptake protein（phnA）	61．1\％
HP0207	ATP－binding protein（mpr）	38.9
HP0136	bacterioferritin comigratory protein（bcp）	35.5
HP0485	catalase－like protein	
HP1104	cinnamyl－alcohol dehydrogenase ELI3－2（cad）	44.0
HP0981	exonuclease VII－Iike protein（xseA）	42.5
HP0569	GTP－binding protein（gtp 1）	48.1
HP0303	GTP－binding protein（obg）	48.2
HP0834	GTP－binding protein homologue（yphC）	36.7
HP0480	GTP－binding protein，fusA－homolog（yihK）	54.1
HP1489	lipase－like protein	21.78
HP0405	nifS－like protein	27.3
HP0221	nifU－like protein	37.3
HP0658	PET112－like protein	45.4
HP0089	pfs protein（pfs）	34.5
HP0322 HP0625	poly E－rich protein protein $E(g c p E)$	28.7
HP0431	protein phosphatase 2 C homolog（ptc1）	
HP0624	solute－binding signature and mitochondrial signature protein（aspB）	
HP0377	thiol：disulfide interchange protein（dsbC）， putative	

