Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport, docking and exocytosis of single secretory granules in live chromaffin cells

Abstract

Neurons maintain a limited pool of synaptic vesicles which are docked at active zones and are awaiting exocytosis1,2,3,4. By contrast, endocrine cells releasing large, dense-core secretory granules have no active zones, and there is disagreement about the size5 and even the existence6 of the docked pool. It is not known how, and how rapidly, secretory vesicles are replaced at exocytic sites in either neurons or endocrine cells. By using electron microscopy, we have now been able to identify a pool of docked granules in chromaffin cells that is selectively depleted when cells secrete. With evanescent-wave fluorescence microscopy7, we observed single granules undergoing exocytosis and leaving behind patches of bare plasmalemma. Fresh granules travelled to the plasmalemma at a top speed of 114 nm s−1, taking an average of 6 min to arrive. On arrival, their motility diminished 4-fold, probably as a result of docking. Some granules detached and returned to the cytosol. We conclude that a large pool of docked granules turns over slowly, that granules move actively to their docking sites, that docking is reversible, and that the ‘rapidly releasable pool’ measured electrophysiologically represents a small subset of docked granules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Unfixed, quickly frozen chromaffin cell showing plasmalemma (left) and the granules beneath.
Figure 2: a, 1–4, Successive frames at 0.5s−1 show a granule (1, 2) vanishing abruptly owing to exocytosis (2, 3); the granule and its last location are indicated by circles.
Figure 3: a, Images before (1), immediately after (2) and 20 min after the end of a 2-min stimulation with elevated [K+] (3).
Figure 4: a, A granule appearing beneath the plasmalemma.

Similar content being viewed by others

References

  1. Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673 (1995).

    Article  CAS  Google Scholar 

  2. Pieribone, V. A. et al. Distinct pools of synaptic vesicles in transmitter release. Nature 375, 493–497 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Ceccarelli, B. & Hurlbut, W. P. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol. Rev. 60, 396–441 (1980).

    Article  CAS  Google Scholar 

  4. Hunt, J. M. et al. Apost-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269–1279 (1994).

    Article  CAS  Google Scholar 

  5. Gillis, K. D. & Chow, R. H. Kinetics of exocytosis in adrenal chromaffin cells. Sem. Cell Dev. Biol. (in the press).

  6. Trifaro, J. M. & Vitale, M. L. Cytoskeleton dynamics during neurotransmitter release. Trends Neurosci. 16, 466–472 (1993).

    Article  CAS  Google Scholar 

  7. Stout, A. L. & Axelrod, D. Evanescent field excitation of fluorescence by epiillumination microscopy. Appl. Optics 28, 5237–5242 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Moser, T. & Neher, E. Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices. J. Neurosci. 17, 2314–2323 ((1997)).

    Article  CAS  Google Scholar 

  9. Stevens, C. F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl Acad. Sci. USA 92, 846–849 (1995).

    Article  ADS  CAS  Google Scholar 

  10. von Gersdorff, H. & Matthews, G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J. Neurosci. 17, 1919–1927 (1997).

    Article  CAS  Google Scholar 

  11. Schroeder, T. J., Jankowski, J. A., Senyshyn, J., Holz, R. W. & Wightman, R. M. Zones of exocytotic release on bovine adrenal medullary cells in culture. J. Biol. Chem. 269, 17215–17220 (1994).

    CAS  PubMed  Google Scholar 

  12. Ryan, T. A. & Smith, S. J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995).

    Article  CAS  Google Scholar 

  13. Betz, W. J. & Wu, L. -G. Kinetics of synaptic-vesicle recycling. Curr. Biol. 5, 1098–1101 (1995).

    Article  CAS  Google Scholar 

  14. Evans, L. L. & Bridgman, P. C. Particles move along actin filament bundles in nerve growth cones. Proc. Natl Acad. Sci. USA 92, 10954–10958 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Lee, R. W. & Trifaro, J. M. Characterization of anti-actin antibodies and their use in immunocytochemical studies on the localization of actin in adrenal chromaffin cells in culture. Neurosci. 6, 2087–2108 (1981).

    Article  CAS  Google Scholar 

  16. Cheek, T. R. & Burgoyne, R. D. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett. 207, 110–114 (1986).

    Article  CAS  Google Scholar 

  17. Parsons, T. D., Coorssen, J. R., Horstmann, H. & Almers, W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15, 1085–1096 (1995).

    Article  CAS  Google Scholar 

  18. Tse, F. W., Tse, A., Hille, B., Horstmann, H. & Almers, W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron 18, 121–132 (1997).

    Article  CAS  Google Scholar 

  19. Weibel, E. R., Gonzague, S. K. & Scherle, W. F. Practical stereological methods for morphometric cytology. J. Cell Biol. 30, 23–38 (1966).

    Article  CAS  Google Scholar 

  20. Gingell, T. & Todd, I. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys. J. 26, 507–526 (1979).

    Article  CAS  Google Scholar 

  21. Chow, R. H. & von Rüden, L. in Single-Channel Recording (eds Sakmann, B. & Neher, E.) 245–275 (1995).

    Book  Google Scholar 

  22. Ghosh, R. N. & Webb, W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66, 1301–1318 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Wightman, R. M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl Acad. Sci. USA 88, 10754–10758 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Terakawa, S., Fan, J. H., Kumakura, K. & Ohara-Imaizumi, M. Quantitative analysis of exocytosis directly visualized in living chromaffine cells. Neurosci. Lett. 123, 82–86 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Howard, M. Lindau, W. M. Roberts and T. Soldati for their helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Almers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steyer, J., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997). https://doi.org/10.1038/41329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41329

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing