Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Propagation of activity-dependent synaptic depression in simple neural networks

Abstract

Triple whole-cell recordings from simple networks of cultured hippocampal neurons show that induction of long-term depression at glutamatergic synapses is accompanied by a back propagation of depression to input synapses on the dendrite of the presynaptic neuron. The depression also propagates laterally to divergent outputs of the presynaptic neuron and to convergent inputs on the postsynaptic neuron. There is no forward propagation of depression to the output of the postsynaptic neuron and no presynaptic propagation accompanying long-term depression at GABAergic synapses. Activity-induced synaptic modification is therefore not restricted to the activated synapse, but selectively propagates throughout the neural network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple networks of hippocampal neurons in culture.
Figure 2: Induction of LTD at glutamatergic and GABAergic synapses in hippocampal cultures.
Figure 3: Back propagation of synaptic depression following the induction of LTD at glutamatergic synapses.
Figure 4: Absence of back propagation of depression following the induction of LTD at GABAergic synapses.
Figure 5: Absence of forward propagation of depression.
Figure 6: Lateral propagation of LTD.
Figure 7: a, b, Correlation between the degree of back propagation of synaptic depression and synaptic properties.

Similar content being viewed by others

References

  1. Purves, D. & Lichtman, J. W. Principles of Neural Development (Sinauer Associates, Sunderland, MA, (1985)).

    Google Scholar 

  2. Goodman, C. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell/Neuron 72/10, 77–98 (1993).

    Google Scholar 

  3. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Bliss, T. V. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  5. Ito, M. The cellular basis of cerebellar plasticity. Curr. Opin. Neurobiol. 1, 616–620 (1991).

    Article  CAS  Google Scholar 

  6. Bliss, T. V. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Linden, D. J. & Connor, J. A. Long-term synaptic depression. Annu. Rev. Neurosci. 18, 319–357 (1995).

    Article  CAS  Google Scholar 

  8. Bonhoeffer, T., Staiger, V. & Aertsen, A. Synaptic plasticity in rat hippocampal slice cultures: local “Hebbian” conjugation of pre- and postsynaptic stimulation leads to distributed synaptic enhancement. Proc. Natl Acad. Sci. USA 86, 8113–8117 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Schuman, E. M. & Madison, D. V. Locally distributed synaptic potentiation in the hippocampus. Science 263, 532–536 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Kossel, A., Bonhoeffer, T. & Bolz, J. Non-Hebbian synapses in rat visual cortex. Neuroreport 1, 115–118 (1990).

    Article  CAS  Google Scholar 

  11. Engert, F. & Bonhoeffer, T. Synapse specificity of long-term potentiation breaks down at short distances. Nature 388, 279–284 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Scanziani, M., Malenka, R. C. & Nicoll, R. A. Role of intercellular interactions in heterosynaptic long-term depression. Nature 380, 446–450 (1996).

    Article  ADS  CAS  Google Scholar 

  13. McMahon, L. L. & Kauer, J. A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 266, 737–739 (1977).

    Google Scholar 

  14. Lynch, G. S., Dunwiddle, T. & Gribkoff, V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266, 737–739 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Abraham, W. C. & Goddard, G. V. Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305, 717–719 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Christie, B. R. & Abraham, W. C. NMDA-dependent heterosynaptic long-term depression in the dentate gyrus of anaesthetized rats. Synapse 10, 1–6 (1992).

    Article  CAS  Google Scholar 

  17. Otani, S., Connor, J. A. & Levy, W. B. Long-term potentiation and evidence for novel synaptic association in CA1 stratum-oriens of rat hippocampus. Learn. Mem. 2, 101–106 (1995).

    Article  CAS  Google Scholar 

  18. Muller, D., Hefft, S. & Figurov, A. Heterosynaptic interactions between LTP and LTD in ca1 hippocampal slices. Neuron 14, 599–605 (1995).

    Article  CAS  Google Scholar 

  19. Lo, Y. & Poo, M. -m. Activity-dependent synaptic competition in vitro: Heterosynaptic suppression of developing synapses. Science 254, 1019–1022 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Cash, S., Zucker, R. S. & Poo, M. -m. Spread of synaptic depression by presynaptic cytosolic signaling. Science 272, 998–1001 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Vincent, P. & Marty, A. Neighboring cerebellar Purkinje cells communicate via retrograde inhibition of common presynaptic interneurons. Neuron 11, 885–893 (1993).

    Article  CAS  Google Scholar 

  22. Rumelhard, D. E., Hinton, G. E. & Williams, R. J. Parallel Distributed Processing: Explorations in the Microstructure of Cognition Vol. 1(eds Rumelhart, D. E. & McClelland, J. L.) 316–362 (MIT Press, Cambridge, MA, (1986)).

    Google Scholar 

  23. Churchland, P. S. & Sejnowski, T. J. The Computational Brain (MIT Press, Cambridge, MA, (1992)).

    MATH  Google Scholar 

  24. Wilcox, K. S., Buchhalter, J. & Dichter, M. A. Properties of inhibitory and excitatory synapses between hippocampal neurons in very low density cultures. Synapse 18, 128–151 (1994).

    Article  CAS  Google Scholar 

  25. Bekkers, J. M. & Stevens, C. F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl Acad. Sci. USA 88, 7834–7838 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Goda, Y. & Stevens, C. F. Long-term depression properties in a simple system. Neuron 16, 103–111 (1996).

    Article  CAS  Google Scholar 

  27. Tong, G., Malenka, R. C. & Nicoll, R. A. Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity. Neuron 16, 1147–1157 (1996).

    Article  CAS  Google Scholar 

  28. Dudek, S. M. & Bear, M. F. Homosynaptic long-term depresison in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl Acad. Sci. USA 89, 4363–4367 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Mulkey, R. M. & Malenka, R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).

    Article  CAS  Google Scholar 

  30. Bolshakov, V. Y. & Siegelbaum, S. A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264, 1148–1751 (1994).

    Article  ADS  CAS  Google Scholar 

  31. Stevens, C. F. & Wang, Y. Changes in reliabiity of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Xiao, M. -Y., Wigstrom, H. & Gustafsson, B. Long-term depression in the hippocampal CA1 region is associated with equal changes in AMPA and NMDA receptor-mediated synaptic potentials. Eur. J. Neurosci. 6, 1055–1057 (1994).

    Article  CAS  Google Scholar 

  33. Dan, Y. & Poo, M. -m. Hebbian depression of isolated neuromuscular synapses in vitro. Science 256, 1570–1573 (1992).

    Article  ADS  CAS  Google Scholar 

  34. Cash, S., Dan, Y., Poo, M. -m. & Zucker, R. Depression of developing neuromuscular synapses by postsynaptic elevation of calcium. Neuron 16, 745–754 (1996).

    Article  CAS  Google Scholar 

  35. Brocher, S., Artola, A. & Singer, W. Intracellular injection of Ca2+ chelators blocks induction of long-term depression in rat visual cortex. Proc. Natl Acad. Sci. USA 89, 123–127 (1992).

    Article  ADS  CAS  Google Scholar 

  36. Murthy, V. N., Sejnowski, T. J., Stevens, C. F. Heterogenous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  Google Scholar 

  37. Clarke, P. G. H. The role of trophic communication in biological networks. Concepts Neurosci. 2, 201–219 (1991).

    Google Scholar 

  38. Jessell, T. M. & Kandel, E. R. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communicaiton. Cell/Neuron 72/10, 1–30 (1993).

    Google Scholar 

  39. Dan, Y. & Poo, M. -m. Retrograde interactions during formation and elimination of neuromuscular synapses. Curr. Opin. Neurobiol. 4, 95–100 (1994).

    Article  CAS  Google Scholar 

  40. Davis, G. W. & Murphey, R. K. Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system. J. Neurobiol. 25, 740–756 (1994).

    Article  CAS  Google Scholar 

  41. Fitzsimonds, R. M. & Poo, M. -m. Retrograde signaling in the development and modulation of synapses. Physiol. Rev.(in the press).

  42. Mathews, M. R. & Nelson, V. H. Detachment of structurally intact nerve endings from chromatolytic neurons of rat superior cervical ganglion during the depression of synaptic transmission induced by post-ganglionic axotomy. J. Physiol. (Lond.) 245, 91–135 (1975).

    Article  Google Scholar 

  43. Purves, D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J. Physiol. (Lond.) 252, 429–463 (1975).

    Article  CAS  Google Scholar 

  44. Wood, M. R. & Faber, D. S. Electrohysiological and morphological correlates of axotomy-induced deafferentation of the goldfish Mauthner cell. J. Comp. Neurol. 244, 413–426 (1986).

    Article  CAS  Google Scholar 

  45. Pilar, G. & Landmesser, L. Axotomy mimicked by localized colchicine application. Science 177, 1116–1118 (1972).

    Article  ADS  CAS  Google Scholar 

  46. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagation errors. Nature 323, 533–536 (1986).

    Article  ADS  Google Scholar 

  47. Zipser, D. & Rumelhart, D. E. in Computational Neuroscience (ed. Schwartz, E. L.) 192–200 (MIT Press, Cambridge, MA, (1990)).

    Google Scholar 

  48. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  49. Horn, R. & Marty, A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

  50. Rae, J., Cooper, K., Gates, P. & Watsky, M. Low access resistance perforated patch recordings using amphotericin B. J. Neurosci. Meth. 37, 15–26 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Mau for preparing cell cultures, and Y. Dan, B. Berninger and A.Schinder for discussion. This work was supported by grants from the NIH and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-ming Poo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzsimonds, R., Song, Hj. & Poo, Mm. Propagation of activity-dependent synaptic depression in simple neural networks. Nature 388, 439–448 (1997). https://doi.org/10.1038/41267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41267

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing