Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinesin hydrolyses one ATP per 8-nm step

Abstract

Kinesin is a two-headed, ATP-dependent motor protein1,2 that moves along microtubules indiscrete steps3 of 8 nm. In vitro, single molecules produceprocessive movement4,5, motors typically take 100steps before releasing from a microtubule5,6,7 . A central question relates tomechanochemical coupling in this enzyme: how many molecules ofATP are consumed per step? For the actomyosin system,experimental approaches to this issue have generated considerablecontroversy8,9. Here we take advantage of theprocessivity of kinesin to determine the coupling ratio withoutrecourse to direct measurements of ATPase activity, which aresubject to large experimental uncertainties8,10,11,12. Beads carrying singlemolecules of kinesin moving on microtubules were tracked with highspatial and temporal resolution by interferometry3,13. Statistical analysis of theintervals between steps at limiting ATP, and studies offluctuations in motor speed as a function of ATPconcentration14,15, allow the coupling ratio to bedetermined. At near-zero load, kinesin moleculeshydrolyse a single ATP molecule per 8-nm advance. Thisfinding excludes various one-to-many andmany-to-one coupling schemes, analogous to thoseadvanced for myosin, and places severe constraints on models for movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average bead velocity, v, versus ATP concentration (double logarithmic plot).
Figure 2: a, Sample record of movement at 2 µM ATP, showing the elementary steps (solid line).
Figure 3: a, Histogram of times between steps for records at limiting ATP concentration (0.75, 1 and 2 µM).

Similar content being viewed by others

References

  1. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating enzyme, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  2. Kreis, T. & Vale, R. D. Guidebook to the Cytoskeletal and Motor Proteins(Oxford Univ. Press, (1993)).

    Google Scholar 

  3. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348– 352 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451– 453 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448– 450 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Burton, K. Myosin step size: estimates from motility assays and shortening muscle. J. Muscle Res. Cell Motil. 13, 590– 607 (1992).

    Article  CAS  Google Scholar 

  9. Yanagida, T., Harada, Y. & Ishijima, A. Nano-manipulation of actomyosin molecular motors in vitro: a new working principle. Trends Biochem. Sci. 18, 319–324 (1993).

    Article  CAS  Google Scholar 

  10. Sowerby, A. J., Seehra, C. K., Lee, M. & Bagshaw, C. R. Turnover of fluorescent nucleoside triphosphates by isolated immobilized myosin filaments: transient kinetics on the zeptomole scale. J. Mol. Biol. 234, 114–123 (1993).

    Article  CAS  Google Scholar 

  11. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  12. Toyoshima, Y. Y., Kron, S. J. & Spudich, J. A. The myosin step size: measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proc. Natl Acad. Sci. USA 87, 7130–7134 ( 1990).

    Article  ADS  CAS  Google Scholar 

  13. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773– 784 (1994).

    Article  CAS  Google Scholar 

  14. Svoboda, K., Mitra, P. P. & Block, S. M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl Acad. Sci. USA 91 , 11782–11786 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Schnitzer, M. J. & Block, S. M. Statistical kinetics of processive enzymes. Cold Spring Harb. Symp. Quant. Biol. 60, 793–802 (1995).

    Article  CAS  Google Scholar 

  16. Hackney, D. D. The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. J. Biol. Chem. 269, 16508–16511 (1994).

    CAS  PubMed  Google Scholar 

  17. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Ma, Y. & Taylor, E. W. Kinetic mechanism of the kinesin motor domain. Biochemistry 34, 13242– 13251 (1995).

    Article  CAS  Google Scholar 

  19. Leibler, S. & Huse, D. A. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121 , 1357–1368 (1993).

    Article  CAS  Google Scholar 

  20. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Samuel, A. D. T. & Berg, H. C. Torque-generating units of bacterial flagellar motor step independently. Biophys. J. 71, 918–923 ( 1996).

    Article  ADS  CAS  Google Scholar 

  22. Block, S. M. & Svoboda, K. Analysis of high resolution recordings of motor movement. Biophys. J. 68, 230s– 241s (1995).

    Google Scholar 

  23. Duke, T. & Leibler, S. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J. 71, 1235–1247 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Gelles, J. et al. Structural and functional features of one- and two-headed biotinated kinesin derivatives. Biophys. J. 68, 276s–282s (1995).

    Google Scholar 

  26. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 ( 1996).

    Article  CAS  Google Scholar 

  27. Peskin, C. S. & Oster, G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202s–211s (1995).

    Google Scholar 

  28. Derenyi, I. & Vicsek, T. The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl Acad. Sci. USA 93, 6775–6779 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Block, S. M. Fifty ways to love your lever: myosin motors. Cell 87, 151–157 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gross, W. Ryu, L. Satterwhite, M. Wang and especially K. Visscher for technical assistance and discussions; S. Gross for help in purifying kinesin; and P. Mitra and K. Svoboda for advice in the early stages of this project. This work was supported by a grant from NIGMS (S.M.B.) and predoctoral fellowships from NSF and American Heart Association (M.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Schnitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzer, M., Block, S. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997). https://doi.org/10.1038/41111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing