Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for human influence on climate from hemispheric temperature relations

Abstract

Analysis of observational temperature records for the Northern and Southern hemispheres indicates a statistical relationship in which Northern Hemisphere temperature depends on temperature in the Southern Hemisphere. This pattern, which has strengthened over time, can be explained by the climatic effects of anthropogenic trace gases and tropospheric sulphate aerosols. A similar statistical patternis produced by model simulations of the historical atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in the statistical significance of the south-to-north causal order over time (filled circles).

Similar content being viewed by others

References

  1. Jones, P. D. Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J. Clim. 7, 1794– 1802 (1994).

    Google Scholar 

  2. Vinnikov, K. Y., Groisman, P. Y. & Lugina, K. M. Empirical data on contemporary global climate changes (temperature and precipitation). J. Clim. 3, 662–677 (1990).

    Article  ADS  Google Scholar 

  3. Hansen, J. & Lebedeff, S. Global trends of measured air temperature. J. Geophys. Res. 92, 13345– 13372 (1987).

    Article  ADS  Google Scholar 

  4. Kerr, R. A. Is the world warming or not. Science 267, 612 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Schneider, S. H. Detecting climatic change signals: are there any fingerprints? Science 263, 341–347 ( 1994).

    Article  ADS  CAS  Google Scholar 

  6. Lindzen, R. S. Some coolness concerning global warming. Bull. Am. Meteorol. Soc. 71, 288–299 ( 1990).

    Article  ADS  Google Scholar 

  7. Santer, B. D., Wigley, T. M. L., Barnett, T. P. & Anyamba, E. in Climate Change 1995: The Science of Climate Change(eds Houghton, J. T. et al.) 407–433 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  8. Santer, B. D. et al. Asearch for human influences on the thermal structure of the atmosphere. Nature 382, 39– 46 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Lane, L. J., Nichols, M. H. & Osborn, H. B. Time series analysis of global change data. Environ. Pollut. 83, 63–88 (1994).

    Article  CAS  Google Scholar 

  10. Kuo, C., Lindberg, C. & Thomson, D. J. Coherence established between atmospheric carbon dioxide and global temperature. Nature 343, 709–714 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Thomson, D. J. The seasons, global temperature, and precision. Science 268, 59–68 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Schönwiese, C. D. Analysis and prediction of global climate temperature change based on multiforced observational statistics. Environ. Pollut. 83, 149–154 (1994).

    Article  Google Scholar 

  13. Tol, R. S. J. & de Vos, A. F. Greenhouse statistics–time series analysis. Theor. Appl. Climatol. 48, 63–74 (1993).

    Article  ADS  Google Scholar 

  14. Tol, R. S. J. Greenhouse statistics–time series analysis: Part II. Theor. Appl. Climatol. 49, 91–102 (1994).

    Article  ADS  Google Scholar 

  15. Lean, J. L., Beer, J. & Bradley, R. Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995).

    Article  ADS  Google Scholar 

  16. Granger, C. W. J. Investigating causal relations by econometric models and cross spectral models. Econometrica 37, 424–438 (1969).

    Article  Google Scholar 

  17. Sims, C. Macroeconomics and reality. Econometrica 48, 1–49 (1980).

    Article  Google Scholar 

  18. Nicholls, N. et al. in Climate Change 1995: The Science of Climate Change(eds Houghton, J. T. et al.) 138–192 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  19. Parker, D. E., Jones, P. D., Folland, C. K. & Bevan, A. 1994. Interdecadal changes of surface temperatures since the late 19th century. J. Geophys. Res. 99, 14373– 14399 (1994).

    Article  ADS  Google Scholar 

  20. Dickey, D. A. & Fuller, W. A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Statist. Assoc. 74, 427–431 ( 1979).

    MathSciNet  MATH  Google Scholar 

  21. Phillips, P. & Perron, P. Testing for a unit root in time series regression. Biometrica 75, 335– 346 (1988).

    Article  MathSciNet  Google Scholar 

  22. Akaike, H. in 2nd Int. Symp. on Information Theory(eds Petrov, P. N. & Csaki, F.) 267–281 (Akadacemiai Kiadaco, Budapest, (1973)).

    Google Scholar 

  23. Hamilton, J. D. Time Series Analysis(Princeton Univ. Press, (1994)).

    MATH  Google Scholar 

  24. Schmidt, P. & Phillips, P. C. B. LM tests for a unit root in the presence of deterministic trends. Oxford Bull. Econ. Statist. 34, 357–287 ( 1992).

    Google Scholar 

  25. Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dynam. Control 12, 231–254 ( 1988).

    Article  MathSciNet  Google Scholar 

  26. Johansen, S. & Juselius, K. Maximum likelihood estimation and inference on cointegration with application to the demand for money. Oxford Bull. Econ. Statist. 52, 169– 209 (1990).

    Article  Google Scholar 

  27. Enders, W. Applied Econometric Time Series(Wiley, New York, (1995 )).

    Google Scholar 

  28. Toda, H. Y. & Phillips, P. C. B. The spurious effects of unit roots on exogeneity tests in vector autoregressions: an analytic study. J. Econometr. 59, 229–255 (1993).

    Article  Google Scholar 

  29. Ohanian, L. E. The spurious effects of unit roots on vector autoregressions. J. Econometr. 39, 251–266 (1988).

    Article  MathSciNet  Google Scholar 

  30. Philander, S. G. El Nino, La Nina, and the Southern Oscillation(Academic, San Diego, (1990)).

    Google Scholar 

  31. Alkezweeny, A. J. Trend analyses of sulfur dioxide emissions and sulfate concentrations and their application for global cooling. Atmósfera 8, 91–97 (1995).

    Google Scholar 

  32. Kiehl, J. T. & Briegleb, B. P. The relative roles of sulphate aerosols and greenhouse gases in climate forcing. Science 260, 311–314 (1993).

    Article  ADS  CAS  Google Scholar 

  33. Keeling, C. D. et al. in Aspects of Climate Variability in the Pacific and Western Americas(ed. Petersen, D. H.) 165–236 (Geophys. Monogr. 55, Am. Geophys. Un., Washington DC, (1989)).

    Google Scholar 

  34. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125 (1993).

    Article  ADS  CAS  Google Scholar 

  35. Faser, P. & Derek, N. in Baseline 91(eds Dick, C. & Gras, J.) 70–81 (Bureau of Meteorology-CSIRO, Melbourne, (1994)).

    Google Scholar 

  36. Fraser, P., Penkett, S., Gunson, M., Weiss, R. & Rowland, F. S. in Concentrations, Lifetimes, and Trends of CFC's Halons, and Related Species(eds Kay, J, Penket, S. & Ormand, F.) 1.1–1.68 (Rep. No. 1339, NASA, Washington DC, (1994)).

    Google Scholar 

  37. Engle, R. E. & Granger, C. W. J. Cointegration and error-correction: representation, estimation, and testing. Econometrica 55, 251–276 (1987).

    Article  MathSciNet  Google Scholar 

  38. Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–504 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Christiano, L. J. Searching for a break in GNP. J. Bus. Econ. Statist. 10, 237–250 (1992).

    Google Scholar 

  40. Prather, M., McElroy, M., Wofsy, S., Russel, G. & Rind, D. Chemistry of the global troposphere: fluorocarbons as tracers of air motion. J. Geophys. Res. 92, 6579–6613 (1987).

    Article  ADS  CAS  Google Scholar 

  41. Elkins, J. W. et al. in Trends 93: A Compendium of Data on Global Change(eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. S.) 501 –504 (ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge Natl Lab., Oak Ridge, TN, (1994)).

    Google Scholar 

  42. Etheridge, D. M., Pearman, G. I. & Fraser, P. J. in Trends '93: A Compendium of Data on Global Change (eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. S.) 256–260 (ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge Natl Lab., Oak Ridge, TN, (1994 )).

    Google Scholar 

  43. Khalil, M. A. K. & Rasmussen, R. A. Global emissions of methane during the last several centuries. Chemosphere 29, 833–842 (1994).

    Article  ADS  CAS  Google Scholar 

  44. Dlugokenchy, E. J., Lang, P. M., Masarie, K. A. & Steele, L. P. in Trends '93: A Compendium of Data on Global Change(ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge Natl Lab., Oak Ridge, TN, (1994)).

    Google Scholar 

  45. Prinn, R. G. et al. CDIAC World Data Center Dataset No. DB-1001(Available by anonymous ftp from cdiac.esd@ornl.gov).

  46. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1,000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    Article  ADS  CAS  Google Scholar 

  47. Keeling, C. D. & Whorf, T. P. in Trends '93: A Compendium of Data on Global Change(eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. S.) 16–26 (ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge Natl Lab., Oak Ridge, TN, (1994)).

    Google Scholar 

  48. Prinn, R. D. et al. Atmospheric emissions and trends of nitrous oxide deduced from ten years of ALE/GAGE data. J. Geophys. Res. 95 , 18369–18385 (1990).

    Article  ADS  Google Scholar 

  49. Prinn, R. D. et al. CDIAC World Data Center Dataset No. DB-1001(Oak Ridge, (1995)).

    Google Scholar 

  50. Machida, T., Nakazawa, T., Fujii, Y., Aooki, A. & Watanabe, O. Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys. Res. Lett. 22, 2921–2924 ((1995)).

    Article  ADS  CAS  Google Scholar 

  51. Stern, D. I. & Kaufmann, R. K. Estimates of Global Anthropogenic Sulfate Emissions 1860–1993(Working Paper 9602, Centre for Energy & Environmental Studiies, Boston University, (1996)); (available at http://cres.anu.edu.au/dstern/CEES_WP/9602.w)

    Google Scholar 

  52. Sato, M., Hansen, J. E., McCormick, D. J. & Pollack, J. B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 98, 22987–2294 ( 1993).

    Article  ADS  Google Scholar 

  53. Shine, K. P. R. G., Derwent, D. J., Wuebbles, D. J. & Mocrette, J. J. in Climate Change: The IPCC Scientific Assessment(eds Houghton, J. T., Jenkins, G. J. & Ephramus, J. J.) 47–68 (Cambridge Univ. Press, (1991)).

    Google Scholar 

  54. Kattenberg, A. F. et al. in Climate Change 1995: The Science of Climate Change(eds Houghton, J. T. et al.) 289–357 (Cambridge Univ. Press, (1996)).

    Google Scholar 

Download references

Acknowledgements

We thank the following individuals for data: T. Boden, L. D. Harvey, J. Lean, M. Sato and D. Viner. We thank B. P. Briegleb, M. Friedl, S. Hall, G. Hegerl, J. Key, P. Mayewski, B. Moore III, G. Salvucci, H. Y. Toda, K. Trenberth and P. Young for comments on preliminary versions of this Article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Kaufmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, R., Stern, D. Evidence for human influence on climate from hemispheric temperature relations. Nature 388, 39–44 (1997). https://doi.org/10.1038/40332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40332

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing