Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Grazing-activated chemical defence in a unicellular marine alga

Abstract

Marine plankton use a variety of defences against predators, some of which affect trophic structure and biogeochemistry1. We have previously shown2 that, during grazing by the protozoan Oxyrrhis marina on the alga Emiliania huxleyi, dimethylsulphoniopropionate (DMSP) from the prey is converted to dimethyl sulphide (DMS) when lysis of ingested prey cells initiates mixing of algal DMSP and the enzyme DMSP lyase. Such a mechanism is similar to macrophyte defence reactions3,4. Here we show that this reaction deters protozoan herbivores, presumably through the production of highly concentrated acrylate, which has antimicrobial activity5. Protozoan predators differ in their ability to ingest and survive on prey with high-activity DMSP lyase, but all grazers preferentially select strains with low enzyme activity when offered prey mixtures. This defence system involves investment in a chemical precursor, DMSP, which is not self-toxic and has other useful metabolic functions. We believe this is the first report of grazing-activated chemical defence in unicellular microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DMS production during grazing by O. marina on single (a) and multiple (b) E. huxleyi strains.
Figure 2: O. marina feeding selectivity on mixtures of Dunaliella tertiolecta and either high- or low-activity E. huxleyi (strains 379 or 374), with prey ratios ranging from 20% to 80% E. huxleyi.

Similar content being viewed by others

References

  1. Verity, P. G. & Smetacek, V. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130, 277–293 (1996).

    Article  ADS  Google Scholar 

  2. Wolfe, G. V. & Steinke, M. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Chew, F. S. in Biologically Active Natural Products (ed. Cutler, H. G.) 155–181 (American Chemical Society, Washington DC, (1988)).

    Book  Google Scholar 

  4. Paul, V. J. & van Alstyne, K. L. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160, 191–203 (1992).

    Article  CAS  Google Scholar 

  5. Sieburth, J. M. Acrylic acid, an "antibiotic" principle in Phaeocystis blooms in Antarctic waters. Science 132, 676–677 (1960).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Cantoni, G. L. & Anderson, D. G. Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J. Biol. Chem. 222, 171–177 (1956).

    CAS  PubMed  Google Scholar 

  7. Sherr, E. B. & Sherr, B. F. Bacterivory and herbivory: key roles of phagotrophic protists in prelagic food webs. Microb. Ecol. 27, 223–235 (1994).

    Article  Google Scholar 

  8. Slezak, D. M., Puskaric, S. & Herndl, G. J. Potential role of acrylic acid in bacterioplankton communities in the sea. Mar. Ecol. Prog. Ser. 105, 191–197 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Stoecker, D. K., Gallager, S. M., Langdon, C. J. & Davis, L. H. Particle capture by Favella sp. (Ciliata, Tintinnida). J. Plankton Res. 17, 1105–1124 (1995).

    Article  Google Scholar 

  10. Taniguchi, A. & Takeda, Y. Feeding rate and behavior of the tintinnid ciliate Favella taraikaensis observed with a high speed VTR system. Mar. Microb. Food Webs 3, 21–34 (1988).

    Google Scholar 

  11. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. in Novel Phytoplankton Blooms (eds Cooper, E. M., Bricelj, V. M. & Carpenter, E. J.) 101–115 (Springer, Berlin, (1989)).

    Book  Google Scholar 

  12. Wangersky, P. J. & Guillard, R. R. L. Low molecular weight organic base from the dinoflagellate Amphidinium carteri. Nature 185, 689–690 (1960).

    Article  ADS  CAS  Google Scholar 

  13. DeMott, W. R., Zhang, Q.-X. & Carmichael, W. W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36, 1346–1357 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Hansen, P. J., Cembella, A. D. & Moestrup, O. The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition, and toxicity to a tintinnid ciliate. J. Phycol. 28, 597–603 (1992).

    Article  CAS  Google Scholar 

  15. Uye, S.-I. & Takamatsu, K. Feeding interactions between planktonic copepods and red-tide flagellates from Japanese coastal waters. Mar. Ecol. Prog. Ser. 59, 97–107 (1990).

    Article  ADS  Google Scholar 

  16. Verity, P. G. Feeding in planktonic protozoans: evidence for non-random acquisition of prey. J. Protozool. 38, 69–76 (1991).

    Article  Google Scholar 

  17. Flynn, K. J., Davidson, K. & Cunningham, A. Prey selection and rejection by a microflagellate: implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196, 357–372 (1996).

    Article  Google Scholar 

  18. Van Houten, J., Hauser, D. C. R. & Levandowsky, M. in Biochemistry and Physiology of Protozoa (eds Levandowsky, M. & Hutner, S. H.) 4, 67–124 (Academic, New York, (1981)).

    Google Scholar 

  19. Fowden, L. & Lea, P. J. in Herbivores: Their Interaction with Secondary Plant Metabolites (eds Rosenthal, G. A. & Janzen, D. H.) 135–160 (Academic, New York, (1979)).

    Google Scholar 

  20. Harvell, C. D. The ecology and evolution of inducible defenses. Q. Rev. Biol. 65, 323–340 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Gröne, T. & Kirst, G. O. Aspects of dimethylsulfoniopropionate effects on enzymes isolated from the marine phytoplankter Tetraselmis subcordiformis (Stein). J. Plant Physiol. 138, 85–91 (1991).

    Article  Google Scholar 

  22. Dickson, D. M. J. & Kirst, G. O. Osmotic adjustment in marine eukaryotic algae: the role of inorganic ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes. New Phytol. 106, 645–655 (1987).

    Article  CAS  Google Scholar 

  23. Kirst, G. O. et al. Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role. Mar. Chem. 35, 381–388 (1991).

    Article  CAS  Google Scholar 

  24. Ishida, Y. & Kadota, H. Participation of dimethyl-β-propiothetin in transmethylation reaction in Gyrodinium cohnii. Bull. Jpn. Soc. Sci. Fish. 34, 699–705 (1968).

    Article  CAS  Google Scholar 

  25. Schmitt, T. M., Hay, M. E. & Lindquist, N. Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76s, 107–123 (1995).

    Article  Google Scholar 

  26. Matsumura, K. Tetrodotoxin as a pheromone. Nature 378, 563–564 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sjoblad, R. D. & Mitchell, R. Chemotactic responses of Vibrio alginolyticus to algal extracellular products. Can. J. Microb. 25, 964–967 (1979).

    Article  CAS  Google Scholar 

  28. Zimmer-Faust, R. K., de Souza, M. P. & Yoch, D. C. Bacterial chemotaxis and its potential role in marine dimethylsulfide production and biogeochemical sulfur cycling. Limnol. Oceanogr. 41, 1330–1334 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Hauser, D. C. R., Levandowsky, M., Hunter, S. H., Chunosoff, L. & Hollwitz, J. S. Chemosensory responses by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Microbiol. Ecol. 1, 246–254 (1975).

    Article  CAS  Google Scholar 

  30. Nevitt, G. A., Veit, R. R. & Kareiva, P. Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds. Nature 376, 680–682 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Palenik for E. huxleyi strain L; L. Fessenden for protozoan isolates; R.Zimmer-Faust for the video motion analysis of O. marina; and E. Sherr for comments on the manuscript. This work was supported by grants from NASA and the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon V. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, G., Steinke, M. & Kirst, G. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997). https://doi.org/10.1038/43168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43168

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing