Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor

An Erratum to this article was published on 12 March 1998

Abstract

Glial-cell-line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two structurally related, potent survival factors for sympathetic, sensory and central nervous system neurons1,2,3,4,5,6. GDNF mediates its actions through a multicomponent receptor system composed of a ligand-binding glycosyl-phosphatidylinositol (GPI)-linked protein (designated GDNFR-α) and the transmembrane protein tyrosine kinase Ret7,8,9,10,11,12. In contrast, the mechanism by which the NTN signal is transmitted is not well understood. Here we describe the identification and tissue distribution of a GPI-linked protein (designated NTNR-α) that is structurally related to GDNFR-α. We further demonstrate that NTNR-α binds NTN (Kd 10 pM) but not GDNF with high affinity; that GDNFR-α binds to GDNF but not NTN with high affinity; and that cellular responses to NTN require the presence of NTNR-α. Finally, we show that NTN, in the presence of NTNR-α, induces tyrosine-phosphorylation of Ret, and that NTN, NTNR-α and Ret form a physical complex on the cell surface. These findings identify Ret and NTNR-α as signalling and ligand-binding components, respectively, of a receptor for NTN and define a novel family of receptors for neurotrophic and differentiation factors composed of a shared transmembrane protein tyrosine kinase and a ligand-specific GPI-linked protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structure of NTNR-α, and their homology to rat GDNFR-α.
Figure 2: Tissue distribution of mRNA for NTNR-α and GDNFR-α.
Figure 3: Binding of iodinated NTN and GDNF to NTNR-α and GDNFR-α.
Figure 4: Interaction between NTN, NTNR-α and Ret.
Figure 5: A schematic representation of activation of Ret by NTN or GDNF.

Similar content being viewed by others

References

  1. Lin, L. H., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kotzbauer, P. T.et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384, 467–470 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Henderson, C. E.et al. GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Buj-Bell, A., Buchman, V. L., Horton, A., Rosenthal, A. & Davies, A. M. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15, 821–828 (1995).

    Article  Google Scholar 

  5. Arenas, E., Trupp, M., Akerud, P. & Ibáñez, C. F. GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15, 1465–1473 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Trupp, M.et al. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J. Cell Biol. 130, 137–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, M., Ritz, J. & Cooper, G. M. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42, 581–588 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi, M. & Cooper, G. M. ret Transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell. Biol. 7, 1378–1385 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Treanor, J. J. S.et al. Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Jing, S.et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Trupp, M.et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785–789 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Durbec, P.et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 381, 789–793 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Koke, J. A., Yang, M., Henner, D. J., Volwerk, J. J. & Griffith, O. H. High-level expression in Escherichia coli and rapid purification of phosphatidylinositol-specific phospholipase C from Bacillus cereus and Bacillus thuringiensis. Protein Expr. Purif. 2, 51–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda, I.et al. Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene 5, 1291–1296 (1990).

    CAS  PubMed  Google Scholar 

  15. Takahashi, M., Buma, Y. & Taniguchi, M. Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 6, 297–301 (1991).

    CAS  PubMed  Google Scholar 

  16. Davis, S.et al. Released form of CNTF receptor α component as a soluble mediator of CNTF responses. Science 259, 1736–1739 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1996).

    Article  ADS  Google Scholar 

  18. Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F. & Pachnis, V. Development 122, 349–358 (1996).

    Google Scholar 

  19. Pichel, J. G.et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sánchez, M. P.et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  ADS  PubMed  Google Scholar 

  21. Moore, M. W.et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lindsay, R. M. & Yancopoulos, G. D. GDNF in a bind with known orphan: Accessory implicated in new twist. Neuron 17, 571–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Ip, N. Y.et al. CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69, 1121–1132 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massague, J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Lee, J.-D.et al. Glycosyl-phosphatidylinositol-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc. Natl Acad. Sci. USA 90, 9930–9934 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pugin, J.et al. Lipopolysaccharide (LPS) activation of human endothelial and epithelial cells is mediated by LPS binding protein and soluble CD14. Proc. Natl Acad. Sci. USA 90, 2744–2748 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hochuli, E., Dobeli, H. & Schacher, A. New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. J. Chromatogr. 411, 177–184 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Henderson, C. E.et al. in Nerve Cell Culture: A Practical Approach (eds Cohen, J. & Wilkin, G.) 69–81 (Oxford Univ. Press, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank J. Milbrandt and E. Johnson (who were supported by NIH grants) for providing unpublished information and reagents; W. Anstine for preparing the figures; E. Berry for help with the manuscript; A. Ryan for help with the in situ hybridization analysis; M. Vasser, P. Jhurani and P.Ng for synthetic oligonucleotides; M. Yang for the PIPLC enzyme; and V. Arce for help with motor neuron cultures. This work was supported in part by INSERM, Association Francaise contre les Myopathies (AFM) and Institut pour la Recherche sur la Moelle Epiniere (IRME) to C.E.H., and by grants-in-aid from scientific research from the Ministry of Education, Science and Culture of Japan to M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Rosenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R., Sherman, D., Ho, WH. et al. A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 387, 717–721 (1997). https://doi.org/10.1038/42722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing