Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm

Abstract

Although silicon has long been the material of choice for most microelectronic applications, it is a poor emitter of light (a consequence of having an ‘indirect’ bandgap), so hampering the development of integrated silicon optoelectronic devices. This problem has motivated numerous attempts to develop silicon-based structures with good light-emission characteristics1, particularly at wavelengths (1.5 μm) relevant to optical fibre communication. For example, silicon–germanium superlattice structures2 can result in a material with a pseudo-direct bandgap that emits at 1.5 μm, and doping silicon with erbium3 introduces an internal optical transition having a similar emission wavelength, although neither approach has led to practical devices. In this context, β-iron disilicide has attracted recent interest4,5,6,7,8,9,10,11,12 as an optically active, direct-bandgap material th might be compatible with existing silicon processing technology. Here we report the realization of a light-emitting device operating at 1.5 μm that incorporates β-FeSi2 into a conventional silicon bipolar junction. We argue that this result demonstrates the potential of β-FeSi2 as an important candidate for a silicon-based optoelectronic technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the LED structure used.
Figure 2
Figure 3: Plots of the integrated electroluminescence intensity as a function of applied forward voltage at various temperatures: filled circles, 80.
Figure 4: Spectrum of electroluminescence intensity against wavelength, measured at 80 K.
Figure 5: A plot of the integrated intensity as a function of measurement temperature.

Similar content being viewed by others

References

  1. Miller, D. A. Silicon sees the light. Nature 378, 238 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Forster, M.et al. Photoluminescence and photocurrent studies of Si/SiGe p–i–n heterostructures. J.Appl. Phys. 80, 3017–3023 (1996).

    Article  ADS  Google Scholar 

  3. Zheng, B.et al. Room temperature sharp line luminescence at 1.5 microns from an erbium doped light emitting diode. Appl. Phys. Lett. 64, 2842–2844 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Christensen, N. E. Electronic structure of beta-FeSi2. Phys. Rev. B 42, 7148–7153 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Eppenga, R. Ab initio band structure calculation of the semiconductor beta-FeSi2. J. Appl. Phys. 68, 3027–3029 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Finney, M. S.et al. Effects of annealing and cobalt implantation on the optical properties of beta-FeSi2. Mater. Res. Soc. Symp. Proc. 316, 433–438 (1994).

    Article  CAS  Google Scholar 

  7. Radermacher, K., Skeide, R., Carius, J., Klomfass, J. & Mantl, S. Electrical and optical properties of FeSi2 layers. Mater. Res. Soc. Symp. Proc. 320, 115–120 (1994).

    Article  CAS  Google Scholar 

  8. Giannini, C., Lagopmarsino, S., Scarinci, F. & Castrucci, P. Nature of the bandgap of polycrystalline beta-FeSi2 films. Phys. Rev. B 45, 8822–8824 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Rosen, B. N. E.et al. Characterisation of beta-FeSi2/Si heterostructures grown by gas source MBE. Mater. Res. Soc. Symp. Proc. 320, 139–144 (1994).

    Article  Google Scholar 

  10. Bost, M. C. & Mahan, J. E. Aclarification of the index of refraction of beta iron disilicide. J. Appl. Phys. 64, 2034–2037 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Bost, M. C. & Mahan, J. E. Optical properties of semiconducting FeSi2 films. J. Appl. Phys. 58, 2696–2703 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Dimitriadis, C. A.et al. Electronic properties of semiconducting FeSi2 films. J. Appl. Phys. 68, 1726–1734 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Sauer, R.et al. Dislocation related photoluminescence in silicon. Appl. Phys. A 36, 1–13 (1985).

    Article  ADS  Google Scholar 

  14. Radermacher, K., Carius, R. & Mantl, S. Optical and electrical properties of buried semiconducting beta-iron disilicide S. Nucl. Instrum. Meth. B 84, 163–167 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Yang, Z., Homewood, K. P., Finney, M. S., Harry, M. & Reeson, K. J. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78, 1958–1963 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Katsumata, H.et al. Optical absorption and photoluminescence studies of beta-FeSi2 prepared by heavy implantation of Fe+ions into silicon. J. Appl. Phys. 80, 5995–5962 (1996).

    ADS  Google Scholar 

  17. Leong, D., Harry, M., Reeson, K. J. & Homewood, K. P. On the origin of the 1.5 micron luminescence in ion beam synthesized beta-FeSi2. Appl. Phys. Lett. 68, 1649–1650 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Hunt, T. D.et al. Optical properties and phase transformations in alpha and beta iron disilicide layers. Nucl. Instrum. Meth. B 84, 168–171 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Reeson, K. J.et al. Electrical and optical properties of ion beam synthesised (IBS) FeSi2. J. Nucl. Instrum. Meth. B 106, 364–371 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Parker and P. J. Phillips of the University of Warwick for growing the silicon p–n junction layers. This work was supported by the UK Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. J. Reeson or K. P. Homewood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leong, D., Harry, M., Reeson, K. et al. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature 387, 686–688 (1997). https://doi.org/10.1038/42667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42667

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing