Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A geometric technique for relocating hotspots and refining absolute plate motions

Abstract

An age-independent, geometric relationship is presented that links hotspots to the seamounts which they produce, and so permits the use of undated seamounts to refine the motion of tectonic plates. This technique has the potential to rigorously assess hotspot fixity and to locate extinct hotspots. The present application of this method points to a recent change in Pacific plate motion, and suggests a relocation of the Louisville hotspot to the Hollister ridge, south of the Eltanin fracture zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, J. T. A possible origin of the Hawaiian islands. Can. J. Phys. 41, 863–870 (1963).

    Article  ADS  Google Scholar 

  2. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 43–44 (1971).

    Article  ADS  Google Scholar 

  3. Jarrard, R. D. & Clague, D. A. Implications of Pacific island and seamount ages for the origin of volcanic chains. Rev. Geophys. 15, 57–76 (1977).

    Article  ADS  Google Scholar 

  4. Duncan, R. A. & Clague, D. A. in The Ocean Basins and Margins (eds Nairn, A. E. M, Stehli, F. G. & Uyeda, S.) 89–121 (Plenum, New York, 1985).

    Book  Google Scholar 

  5. Batiza, R. & Vanko, D. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder surveys. Mar. Geol. 54, 53–90 (1983).

    Article  ADS  Google Scholar 

  6. Molnar, P. & Stock, J. Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since Late Cretacous time. Nature 327, 587–591 (1987).

    Article  ADS  Google Scholar 

  7. Acton, G. D. & Gordon, R. G. Paleomagnetic tests of Pacific plate reconstructions and implications for motion between hotspots. Science 263, 1246–1254 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Müller, R. D., Royer, J.-Y. & Lawyer, L. A. Evidence for hotspot motion in the Late Cretacous/Early Tertiary. Geol. Soc. Am. Abstr.Progms 23, A318 (1991).

    Google Scholar 

  9. Duncan, R. A. & Richards, M. A. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys. 29, 31–50 (1991).

    Article  ADS  Google Scholar 

  10. Anderson, D. L. The perisphere-PLUME model. Eos 77, F769 (1996).

    Google Scholar 

  11. Norton, I. O. Plate motions in the North Pacific: The 43 Ma nonevent. Tectonics 14, 1080–1094 (1995).

    Article  ADS  Google Scholar 

  12. Tarduno, J. A. & Gee, J. Large-scale motion between Pacific and Atlantic hotspots. Nature 378, 477–480 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Craig, C. H. & Sandwell, D. T. Global distribution of seamounts from Seasat profiles. J. Geophys. Res. 93, 10408–10420 (1988).

    Article  ADS  Google Scholar 

  14. Smith, W. H. F. & Sandwell, D. T. Marine gavity field from declassified Geosat and ERS-1 altimetry. Eos 76, F156 (1995).

    Google Scholar 

  15. Lyons, S. & Wessel, P. Determination of seamount distribution on the Pacific plate from satellite altimetry. Eos 77, F315 (1996).

    Article  Google Scholar 

  16. Kroenke, L. W. & Sager, W. W. The formation of oceanic plateaus on the Pacific plate. Eos 74, 555 (1993).

    Google Scholar 

  17. Yan, C. Y. & Kroenke, L. W. A plate tectonic reconstruction of the southwest Pacific, 0-100 Ma. Proc. ODP Sci. Res. 130, 697–709 (1993).

    Google Scholar 

  18. Yan, C. Y. Evaluating the fixity of Hawaiian and Louisville hotspots and related seamounts and the rigidity of the Pacific plate. Thesis, Texas A&M Univ. (1996).

    Google Scholar 

  19. Harbert, W. & Cox, A. Late Neogene motion of the Pacific plate. J. Geophys. Res. 94, 3052–3064 (1989).

    Article  ADS  Google Scholar 

  20. Pollitz, F. Pliocene change in Pacific-plate motion. Nature 320, 738–741 (1986).

    Article  ADS  Google Scholar 

  21. Cox, A. & Engerbretson, D. Change in motion of the Pacific plate at 5 Ma BP. Nature 313, 472–474 (1985).

    Article  ADS  Google Scholar 

  22. Epp, D. Possible perturbations to hotspot traces and implications for the origin and structure of the Line Islands. J. Geophys. Res. 89, 11273–11286 (1984).

    Article  ADS  Google Scholar 

  23. Watts, A. B., Weissel, J. K., Duncan, R. A. & Larson, R. L. Origin of the Louisville ridge and its relationship to the Eltanin fracture zone system. J. Geophys. Res. 93, 3051–3077 (1988).

    Article  ADS  Google Scholar 

  24. Lonsdale, P. Geography and history of the Louisville hotspot chain in the Southwest Pacific. J. Geophys. Res. 93, 3078–3104 (1988).

    Article  ADS  Google Scholar 

  25. Talandier, J. & Okal, E. A. Monochromatic T waves from underwater volcanoes in the Pacific ocean: Ringing witnesses to geyser processes? Bull. Seismol. Soc. Am. 86, 1529–1544 (1996).

    Google Scholar 

  26. Geli, L., Bougault, H. & the Pacantarctic Scientific Party La campagne Pacantarctic du N/O L'Atlante (Ifremer, Brest, France, 1996).

    Google Scholar 

  27. Small, C. Observations of ridge-hotspot interactions in the southern ocean. J. Geophys. Res. 100, 17931–17946 (1995).

    Article  ADS  Google Scholar 

  28. McNutt, M. K., Caress, D. & Reynolds, J. Multiple episodes of lineated midplate volcanism in the southern Austral islands. Eos 77, F769 (1996).

    Article  Google Scholar 

  29. Turner, D. L. & Jarrard, R. D. K-Ar dating of the Cook-Austral island chain: A test of the hot-spot hypothesis. J. Volcanol. Geotherm. Res. 12, 187–220 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Bird, R. T. & Naar, D. F. Intratransform origins of mid-ocean ridge microplates. Geology 22, 987–990 (1994).

    Article  ADS  Google Scholar 

  31. Cande, S. C., Raymond, C. A., Stock, J. & Haxby, W. F. Geophysics of the Pitman fracture zone and Pacific-Antarctic plate motions during the Cenzoic. Science 270, 947–953 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Cande, S. C. & Kent, D. V. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 97, 13917–13951 (1992).

    Article  ADS  Google Scholar 

  33. Hawkins, J. W. Petrologic synthesis: Lau basin transect (Leg 135). Proc. ODP Init. Rep. 135, 879–905 (1994).

    CAS  Google Scholar 

  34. Larson, R. Bathymetric, magnetic anomalies, and plate tectonic history of the mouth of the Gulf of California. Geol. Soc. Am. Bull. 83, 3345–3360 (1972).

    Article  ADS  Google Scholar 

  35. Taylor, B., Zellmer, K., Martínez, F. & Goodliffe, A. Sea-floor spreading in the Lau back-arc basin. Earth Planet. Sci. Lett. 144, 35–40 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Cande, S. C., Haxby, W. F. & Kent, D. V. Synchronous changes in plate motion in the Late Neogene. Eos 72, 99 (1991).

    Google Scholar 

  37. Kroenke, L. W. in The Origin and Evolution of Pacific Island Biotas (eds Keast, A. & Miller, S. E.) 19–34 (SPB Academic, Amsterdam, 1996).

    Google Scholar 

  38. Keating, B. H. et al. Evidence for a hot-spot origin of the Caroline islands. J. Geophys. Res. 89, 9937–9948 (1984).

    Article  ADS  CAS  Google Scholar 

  39. Müller, R. D., Roest, W. R., Royer, J. Y., Gahagan, L. M. & Sclater, J. G. Digital isochrons of the world's ocean floor. J. Geophys. Res. 102, 3211–3214 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessel, P., Kroenke, L. A geometric technique for relocating hotspots and refining absolute plate motions. Nature 387, 365–369 (1997). https://doi.org/10.1038/387365a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387365a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing