Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic structure of the ectodomain from HIV-1 gp41

Abstract

Fusion of viral and cellular membranes by the envelope glyco-protein gp120/gp41 effects entry of HIV-1 into the cell. The precursor, gp160, is cleaved post-translationally into gp120 and gp41 (refs 1,2), which remain non-covalently associated. Binding to both CD4 and a co-receptor leads to the conformational changes in gp120/gp41 needed for membrane fusion3. We used X-ray crystallography to determine the structure of the protease-resistant part4,5 of a gp41 ectodomain solubilized with a trimeric GCN4 coiled coil in place of the amino-terminal fusion peptide6. The core of the molecule is found to be an extended, triple-stranded a-helical coiled coil with the amino terminus at its tip. A carboxy-terminal α-helix packs in the reverse direction against the outside of the coiled coil, placing the amino and carboxy termini near each other at one end of the long rod. These features, and the existence of a similar reversal of chain direction in the fusion pH-induced conformation of influenza virus HA2 (ref. 7) and in the transmembrane subunit of Moloney murine leukaemia virus8 (Fig. la–d), suggest a common mechanism for initiating fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allan, J. S. et al. Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228, 1091–1094 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Veronese, F. D. et al. Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science 229, 1402–1405 (1985).

    Article  ADS  CAS  Google Scholar 

  3. D'Souza, M. P. & Harden, V. A. Chemokines and HIV-1 second receptors: confluence of two fields generates optimism in AIDS research. Nat. Med. 2, 1293–1300 (1996).

    Article  CAS  Google Scholar 

  4. Blacklow, S. C., Lu, M. & Kim, P. S. A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 34, 14955–14962 (1995).

    Article  CAS  Google Scholar 

  5. Lu, M., Blacklow, S. C. & Kim, P. S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nature Struct. Biol. 2, 1075–1082 (1995).

    Article  CAS  Google Scholar 

  6. Weissenhorn, W. et al. Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 Gp41 ectodomain expressed in E. coli. Proc. Natl Acad. Sci. USA (in the press).

  7. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Fass, D., Harrison, S. C. & Kim, P. S. Retrovirus envelope domain at 1.7 Å resolution. Nature Struct. Biol. 3, 465–469 (1996).

    Article  CAS  Google Scholar 

  9. Harbury, P. B., Kim, P. S. & Alber, T. Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Chambers, P., Pringle, C. R. & Easton, A. J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J. Gen. Virol. 71, 3075–3080 (1980).

    Article  Google Scholar 

  11. Gallaher, W. R., Ball, J. M., Garry, R. F., Griffin, M. C. & Montelaro, R. C. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses 5, 431–440 (1989).

    Article  CAS  Google Scholar 

  12. Weissenhorn, W. et al. The ectodomain of HIV-1 env subunit gp41 forms a soluble, alpha-helical, rod-like oligomer in the absence of gp120 and the N-terminal fusion peptide. EMBO J. 15, 1507–1514 (1996).

    Article  CAS  Google Scholar 

  13. Crick, F. H. C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685 (1953).

    Article  CAS  Google Scholar 

  14. Skehel, J. J. et al. Changes in the conformation of influenza virus haemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl Acad. Sci. USA 79, 968–972 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  Google Scholar 

  16. Ruigrok, R. W. et al. Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. J. Gen. Virol. 69, 2785–2795 (1988).

    Article  CAS  Google Scholar 

  17. Wharton, S. A. et al. Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. EMBO J. 14, 240–246 (1995).

    Article  CAS  Google Scholar 

  18. Moore, J. P., McKeating, J. A., Weiss, R. A. & Sattentau, Q. J. Dissociation of gp120 from HIV-1 virions induced by souble CD4. Science 250, 1139–1142 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Hart, T. K. et al. binding of soluble CD4 proteins to human immunodeficiency virus typel and infected cells induces release of envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA 88, 2189–2193 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kirsh, R. et al. Morphometic analysis of recombinant soluble CD4-mediated release of the envelope glycoprotein gp120 from HIV-1. AIDS Res. Hum. Retroviruses 6, 1209–1212 (1990).

    Article  CAS  Google Scholar 

  21. Chen, J. et al. A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation. Proc. Natl Acad. Sci. USA 92, 12205–12209 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Wild, C. T., Oas, T., McDanal, C. B., Bolognesi, D. & Matthews, T. A synthetic inhibitor of human immunodeficiency virus replciation: Correlation between solution structure and viral inhibition. Proc. Natl Acad. Sci. USA 89, 10537–10541 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B. & Matthews, T. J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 and gp41 are potent inhibitors of virus infection. Proc. Natl Acad. Sci. USA 91, 9770–9774 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Chen, C. H., Matthews, T. J., McDanal, C. B., Bolognesi, D. P. & Greenberg, M. L. A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J. Virol. 69, 3771–3777 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dubay, J. W., Roberts, S. J., Brody, B. & Hunter, E. Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66, 4748–4756 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Skehel, J. J. et al. Membrane Fusion by Influenza Hemagglutinin. Cold Spring Harb. Symp. Quant. Biol. 60, 573–580 (1996).

    Article  Google Scholar 

  27. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Leikin, S., Parsegian, V. A., Rau, D. C. & Rand, R. P. Hydration forces. Annu. Rev. Phys. Chem. 44, 369–395 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Danieli, T., Pelletier, S. L., Henis, Y. I. & White, J. M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J. Cell Biol. 133, 559–569 (1996).

    Article  CAS  Google Scholar 

  30. Kanaseki, T., Kawasaki, K., Murata, M., Ikeuchi, Y. & Ohnishi, S.-I. Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J. Cell Biol. (in the press).

  31. Chan, D. C., Pass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  Google Scholar 

  32. CCP4 The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–776 (1994).

  33. Brünger, A. T. X-PLOR (Version 3.1) Manual (Yale University, New Haven, CT, 1992).

    Google Scholar 

  34. Myers, G. et al. in Theoretical Biology and Biophysics Group, Los Alamos (National Library, Los Alamos, NM, 1995).

    Google Scholar 

  35. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 924–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissenhorn, W., Dessen, A., Harrison, S. et al. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997). https://doi.org/10.1038/387426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing