Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of RhoA in tissue polarity and Frizzled signalling

Abstract

The tissue polarity genes of Drosophila are required for correct establishment of planar polarity in epidermal structures1,2, which in the eye is shown in the mirror-image symmetric arrangement of ommatidia relative to the dorsoventral midline. Mutations in the genes frizzled (fz), dishevelled (dsh) and prickle-spiny-legs (pk-sple) result in the loss of this mirror-image symmetry3–5, fz encodes a serpentine receptor-like transmembrane protein required for reception and transmission of a polarity signal5,6. Little else is known of the signalling pathway(s) involved other than that Dsh acts downstream of Fz7. We have identified mutations in the Drosophila homologue of RhoA p21 GTPase, and by analysis of their phenotype show that RhoA is required for the generation of tissue polarity. Genetic interactions indicate a role for RhoA in signalling mediated by Fz and Dsh, and furthermore suggest that JNK/SAPK-like kinases are involved. These data are consistent with a Fz/RhoA signalling cascade analogous to the yeast pheromone signalling pathway8 and that proposed for activation of the serum response factor (SRF) in vertebrate cells9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gubb, D. & Gardía-Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol. 68, 37–57 (1982).

    CAS  PubMed  Google Scholar 

  2. Adler, P. N. The genetic control of tissue polarity in Drosophila. BioEssays 14, 735–741 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Gubb, D. Genes controlling cellular polarity in Drosophila. Development suppl. 1993, 269–277 (1993).

    Google Scholar 

  4. Theisen, H. et al. dishevelled is required during wingless signalling to establish both cell polarity and cell identity. Development 120, 347–360 (1994).

    CAS  PubMed  Google Scholar 

  5. Zheng, L., Zhang, J. & Carthew, R. W. frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 121, 3045–3055 (1995).

    CAS  PubMed  Google Scholar 

  6. Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes as protein containing seven potential transmembrane domains. Nature 338, 263–264 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Krasnow, R. E., Wong, L. L. & Adler, P. N. dishevelled is a component of the frizzled signalling pathway in Drosophila. Development 121, 4095–4102 (1995).

    CAS  PubMed  Google Scholar 

  8. Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Racl, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Machesky, L. M. & Hall, A. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol. 6, 304–310 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Vojtek, A. B. & Cooper, J. A. Rho family members: activators of MAP kinase cascades. Cell 82, 527–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Dracl is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Eaton, S., Auvinen, P., Luo, L., Jan, Y. N. & Simons, K. CDC42 and Racl control different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell. Biol 131, 151–164 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Harden, N., Loh, H. Y., Chia, W. & Lim, L. A dominant version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cells shape changes in Drosophila. Development 121, 903–914 (1995).

    CAS  PubMed  Google Scholar 

  15. Hariharan, I. K. et al. Characterisation of Rho GTPase family homologues in Drosophila melanogaster. overexpressing Rhol in retinal cells causes a late developmental defect. EMBO J. 14, 292–302 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Klingensmith, J., Nusse, R. & Perrimon, N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 8, 118–130 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Krasnow, R. E. & Adler, P. N. A single frizzled protein has a dual role in tissue polarity Development 120, 1883–1893 (1994).

  19. Brunner, D. et al. A gain of function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76, 875–888 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Biggs, W. H. et al. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13, 1628–1635 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riesgo-Escovar, J. R., Jenni, M., Fritz, A. & Hafen, E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev. 10, 2759–2768 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Sluss, H. K., Han, Z., Barrett, T., Davis, R. J. & Ip, Y. T. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745–2758 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Choi, K.-W. & Benzer, S. Rotation of photo receptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78, 125–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  26. Vincent, J.-P., Girdham, C. H. & O'Farrell, P. H. A cell-autonomous, ubiquitous marker for the analysis of Drosophila genetic mosaics. Dev. Biol. 164, 328–331 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  28. Török, T., Tick, G., Alvarado, M. & Kiss, I. P-lacW insertional mutagenesis on the second chromosome of Drosophila melanogaster: isolation of lethals with different overgrowth phenotypes. Genetics 135, 71–80 (1993).

    PubMed  PubMed Central  Google Scholar 

  29. Mlodzik, M., Hiromi, Y., Weber, U., Goodman, C. S. & Rubin, G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60, 211–224 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Yanagawa, S., van Leeuwen, E.M, Wodarz, A., Klingensmith, J. & Nusse, R. The Dishevelled protein is modified by Wingless signalling Drosophila. Genes Dev. 9, 1087–1097 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strutt, D., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997). https://doi.org/10.1038/387292a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387292a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing