Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2

Abstract

Inherited mutations in the human BRCA2 gene cause about half of the cases of early-onset breast cancer. The embryonic expression pattern of the mouse Brca2 gene is now defined and an interaction identified of the Brca2 protein with the DMA-repair protein Rad51. Developmental arrest in Brca2-deficient embryos, their radiation sensitivity, and the association of Brca2 with Rad51 indicate that Brca2 may be an essential cofactor in the Rad51-dependent DNA repair of double-strand breaks, thereby explaining the tumour-suppressor function of Brca2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wooster, R. et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Nature 265, 2088–2090 (1994).

    CAS  Google Scholar 

  2. Smith, S. A., Easton, D. G., Evans, D. G. R. & Ponder, B. A. J. Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild type chromosome. Nature Genet. 2, 128–131 (1992).

    Article  CAS  Google Scholar 

  3. Easton, D. F., Bishop, D. T., Ford, D., Crockford, G. P. & the breast cancer linkage consortium Genetic linkage analysis in the familial breast and ovarian cancer: Results from 214 families. Am. J. Hum. Genet. 52, 678–701 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gayther, S. A. et al. Variations of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nature Genet. 15, 103–105 (1997).

    Article  CAS  Google Scholar 

  5. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Tavtigian, S. V. et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nature Genet. 12, 333–337 (1996).

    Article  CAS  Google Scholar 

  7. Couch, F. J. et al. BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nature Genet. 13, 123–125 (1996).

    Article  CAS  Google Scholar 

  8. Neuhausen, S. et al. Recurrent BRCA2617delT mutations in Ashkenazi Jewish women affected by breast cancer. Nature Genet. 13, 126–128 (1996).

    Article  CAS  Google Scholar 

  9. Phelan, C. M. et al. Mutation analysis of the BRCA2 gene in 49 site specific breast cancer families. Nature Genet. 13, 120–122 (1996).

    Article  CAS  Google Scholar 

  10. Thorlacius, S. et al. A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nature Genet. 13, 117–119 (1996).

    Article  CAS  Google Scholar 

  11. Sharan, S. K. & Bradley, A. Murine Brca2: Sequence, map position and expression pattern. Genomics 40, 234–241 (1997).

    Article  CAS  Google Scholar 

  12. Rajan, J. V., Wang, M., Marquis, S. T. & Chodosh, L. A. Brca2 is coordinately regulated with Brcal during proliferation and differentiation in mammary epithelial cells. Proc. Natl Acad. Sci. USA 93, 13078–13083 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    Article  CAS  Google Scholar 

  14. Malkova, A., Ivanov, E. L. & Harber, J. E. Double strand break repair in the absence of RAD51 in yeast: a possible role of break-induced DNA replication. Proc. Natl Acad. Sci. USA 93, 7131–7136 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Shinohara, A. et al. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and RecA. Nature Genet. 4, 239–243 (1993).

    Article  CAS  Google Scholar 

  16. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  Google Scholar 

  17. Lim, D.-S. & Hasty, P. A mutaiton in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    Article  CAS  Google Scholar 

  18. Sung, P. & Robberson, D. L. DNA strand exchange mediated by a Rad51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453–461 (1995).

    Article  CAS  Google Scholar 

  19. Raddling, C. M. Helical interactions in homologous pairing and strand exchange driven by RecA protein. J. Biol. Chem. 266, 5355–5358 (1991).

    Google Scholar 

  20. Baumann, P., Benson, F. E. & West, S. C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766 (1996).

    Article  CAS  Google Scholar 

  21. Bishop, D. K. RecA homologs Dmcl and rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79, 1081–1092 (1994).

    Article  CAS  Google Scholar 

  22. Rockmill, B., Sym, M., Schertham, H. & Roeder, G. S. Role of two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9, 2684–2695 (1995).

    Article  CAS  Google Scholar 

  23. Kaufman, M. H. in The Atlas of Mouse Development 2–5 (Academic, San Diego, 1992).

    Google Scholar 

  24. Snow, M. L. H. Gastrulation in the mouse: Growth and regionalization of the epiblast. J. Embryol. Exp. Morph. 42, 293–303 (1977).

    Google Scholar 

  25. Power, M.-A. & Tam, P. P. L. Onset of gastrulation, morphogenesis and somitogenesis in mouse embryos displaying compensatory growth. Anat. Embryol. 187, 493–504 (1993).

    Article  CAS  Google Scholar 

  26. Donovan, J. W., Milne, C. T. & Weaver, T. D. Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair. Genes Dev. 8, 2552–2562 (1994).

    Article  CAS  Google Scholar 

  27. Hakem, R. et al. The tumor suppressor gene Brcal is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    Article  CAS  Google Scholar 

  28. Liu, C. Y., Flesken-Nikitin, A., Li, S., Zeng, Y. & Lee, W.-H. Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev. 10, 1835–1843 (1996).

    Article  CAS  Google Scholar 

  29. Devilee, P. et al. Allelotype of human breast carcinoma: a second major site for loss of heterozygosity is on chromosome 6q. Oncogene 6, 1705–1711 (1991).

    CAS  PubMed  Google Scholar 

  30. Wick, W. et al. Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastic stage in breast cancer. Oncogene 12, 973–978 (1996).

    CAS  PubMed  Google Scholar 

  31. Carr, A. M. & Hoekstra, M. F. The cellular response to DNA damage. Trends Cell Biol. 5, 32–40 (1995).

    Article  CAS  Google Scholar 

  32. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–791 (1993).

    Article  CAS  Google Scholar 

  33. Hu, N. et al. Heterozygous Rb-1 delta20/+ mice are predisposed to tumors of the pituitary gland with nearly complete penetrance. Oncogene 9, 1021–1027 (1994).

    CAS  PubMed  Google Scholar 

  34. Su, L.-K., Vogelstein, B. & Kinzler, K. W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).

    Article  ADS  CAS  Google Scholar 

  35. Sands, A. T., Abuin, A., Sanchez, A., Conti, C. J. & Bradley, A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature 377, 162–165 (1995).

    Article  ADS  CAS  Google Scholar 

  36. de Vries, A. et al. Increased susceptibility to ultraviolet B and carcinogenesis of mice lacking the DNA excision repair gene XPA. Nature 377, 169–173 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Donehower, L. A. et al. Mice deficient for p53 are normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  ADS  CAS  Google Scholar 

  38. Matzuk, M. M., Finegold, M. J., Su, J.-G. J., Hsueh, A. J. W. & Bradley, A. α-Inhibin is a tumour-suppressor gene with a gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  ADS  CAS  Google Scholar 

  39. Ramirez-Solis, R., Davis, A. & Bradley, A. Gene targeting in embryonic stem cells. Meth. Enzymol. 225, 855–878 (1993).

    Article  CAS  Google Scholar 

  40. Albecht, U., Eichele, G., Helms, J. A. & Lu, H.-C. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G. P.) 23–48 (CRC Press, Boca Raton, 1997).

    Google Scholar 

  41. Herrmann, B. G. Expression pattern of the Brcachyury gene in whole-mount Twis/Twis mutant embryos. Development 120, 913–917 (1991).

    Google Scholar 

  42. Durfee, T. et al. The retinoblastoma protein associates with the protein phsophatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).

    Article  CAS  Google Scholar 

  43. Feilotter, H. E., Hannon, G. J., Ruddell, C. J. & Beach, D. Construction of an improved host strain for two hydbrid screening. Nucleic Acids. Res. 22, 1502–1503 (1994).

    Article  CAS  Google Scholar 

  44. Breeden, L. & K. Nasmyth, K. Regulation of the yeast HO gene. Cold Spring Harb. Symp. Quant. Biol. 50, 643–650 (1985).

    Article  CAS  Google Scholar 

  45. Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Meth. Enzymol. 101, 181–191 (1983).

    Article  CAS  Google Scholar 

  46. Miller, J. H. in Experiments in Molecular Genetics 352–355 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharan, S., Morimatsu, M., Albrecht, U. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997). https://doi.org/10.1038/386804a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386804a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing