Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years

Abstract

The Eurasian climates of today, 10 million and 3O million years ago are simulated using an atmospheric general circulation model that incorporates realistic continental geography and epicontinental sea distributions. The resulting climates compare well with various palaeoclimate records. The retreat of the Paratethys–an epicontinental sea–shifts the central Asian climate from temperate to continental conditions, and plays as important a role as uplift of the Himalayan/Tibetan plateau in driving the Asian monsoon changes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manabe, S. & Terpstra, J. B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci. 31, 3–42 (1974).

    Article  ADS  Google Scholar 

  2. Manabe, S. & Broccoli, A. J. Mountains and arid climate of middle latitudes. Science 247, 192–195 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Broccoli, A. J. & Manabe, S. The effect of orography in midlatitude northern hemisphere dry climates. J. Clim. 5, 1181–1201 (1992).

    Article  ADS  Google Scholar 

  4. Hahn, D. G. & Manabe, S. The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci. 32, 1515–1541 (1975).

    Article  ADS  Google Scholar 

  5. Barron, E. J., Thompson, S. L. & Hay, W. W. Continental distribution as a forcing factor for global-scale temperature. Nature 310, 574–575 (1984).

    Article  ADS  Google Scholar 

  6. Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F. & Prell, W. L. Sensitivity of climatic uplift in Southern Asia and in the American West: Numerical experiments. J. Geophys. Res. 94, 18393–18407 (1989).

    Article  ADS  Google Scholar 

  7. Kutzbach, J. E. & Ziegler, A. M. Simulations of late Permian climate and biomes with an atmosphere-ocean model: comparisons with observations. Phil. Trans. R. Soc. Land. B 341, 327–340 (1993).

    Article  ADS  Google Scholar 

  8. Ruddiman, W. F., Prell, W. L. & Raymo, M. E. Late Cenozoic uplift in the Southern Asia and the American West: rationale for General Circulation Modeling Experiment. J. Geophys. Res. 94, 18379–18391 (1989).

    Article  ADS  Google Scholar 

  9. Ruddiman, W. F. & Kutzbach, J. E. Forcing of the late Cenozoic uplift northern hemisphere climate by plateau uplift in the Southern Asia and American West. J. Geophys. Res. 94, 18409–18427 (1989).

    Article  ADS  Google Scholar 

  10. Kutzbach, J. E., Prell, W. L. & Ruddiman, W. F. Sensitivity of Eurasian climate to surface uplift of Tibetan plateau. J. Geol. 101, 177–190 (1993).

    Article  ADS  Google Scholar 

  11. Prell, W. L. & Kutzbach, J. E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360, 647–652 (1992).

    Article  ADS  Google Scholar 

  12. Prell, W. L., Murray, D. W., Clemens, S. C. & Anderson, D. M. in Synthesis of Results from Scientific Drilling in the Indian Ocean (ed. Duncan, R. A.) 447–470 (Geophys. Monogr. 70, Am. Geophys. Union, Washington DC, 1992).

    Google Scholar 

  13. Harzallah, A. & Sadourny, R. Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J. Clim. 8, 474–495 (1995).

    Article  ADS  Google Scholar 

  14. Royer, J. Y. & Sandwell, D. T. Evolution of the Eastern Indian Ocean since the Late Cretaceous: constraints from Geosat altimetry. J. Geophys. Res. 94, 13755–13782 (1989).

    Article  ADS  Google Scholar 

  15. Nürnberg, D. & Muller, R. D. The tectonic evolution of the South Atlantic from Late Jurassic to Present. Tectonophysics 181, 27–33 (1991).

    Article  ADS  Google Scholar 

  16. Olivet, J. L., Bonnin, J., Beuzart, P. & Auzende, J. M. Cinénatique de l'Atlantique Nord et Central (Cent. Nat. Explor. Océans, Brest, 1984).

    Google Scholar 

  17. Besse, J. & Courtillot, V. Paleogeographic maps of the continents bordering the Indian Ocean since the early Jurassic. J. Geophys. Res. 93, 11791–11808 (1988).

    Article  ADS  Google Scholar 

  18. Besse, J. & Courtillot, V. Revised and synthetic apparent polar wander paths of the African, Eurasian, North-American and Indian plates, and true polar wander since 200 Ma. J. Geophys. Res. 96, 4029–4050 (1991).

    Article  ADS  Google Scholar 

  19. Yang, Z. & Besse, J. Paleomagnetic study on Permian and Mesozoic sedimentary rocks from North Thailand supports the extrusion model for Indochina. J. Geophys. Res. 117, 525–552 (1993).

    Google Scholar 

  20. Chen, Y. et al. The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constrains. J. Geophys. Res. 98, 21927–21941 (1993).

    Article  ADS  Google Scholar 

  21. Briais, A., Patriat, P. & Tapponnier, P. Updated interpretation of the magnetic anomalies and seafloor spreading stages in the south China Sea. J. Geophys. Res. 98, 6299–6328 (1993).

    Article  ADS  Google Scholar 

  22. Dercourt, J., Ricou, L. E. & Vrielinck, B. (eds) Atlas Tethys Palaeoenvironmental Maps 1–307 (Gauthier-Villars, Paris, 1993).

  23. Ksavov, D. D. & Verbitsky, M. Ya. . Causes of Antarctic glaciation in the Cenozoic. Quat. Res. 15, 1–17 (1981).

    Article  Google Scholar 

  24. Shackleton, N. J. & Kennett, J. P. Paleotemperature history of the Cenozoic and the initiation of Antarctic Glaciation: oxygen and carbon isotopes analyses in DSDP Site 277, 279, and 291. Init. Rep. DSDP 29, 743–756 (1975).

    CAS  Google Scholar 

  25. Barrett, P. J., Elston, D. P., Harwood, D. M., McKelvey, B. C. & Webb, P. N. Mid-Cenozoic record of glaciation and sea-level change on the margin of the victoria Land Basin. Geology 15, 634–637 (1987).

    Article  ADS  Google Scholar 

  26. Lasker, J. Secular evolution of the solar system over 10 million years. Astron. Astrophys. 98, 341–362 (1988).

    ADS  Google Scholar 

  27. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effects on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Le Treut, H., Li, Z. X. & Forrichon, M. Sensitivity of the LMD general circulation model to greenhouse forcing associated with two different cloud water parameterizations. J. Clim. 7, 1827–1841 (1994).

    Article  ADS  Google Scholar 

  29. Joussaume, S. & Taylor, K. in Proc. 1st Int. AMIP Sci. Conf. WRCP 92 (ed. Gates, L. W.) 425–430 (TD No. 732, WMO, Geneva, 1995).

    Google Scholar 

  30. Biju-Duval, B., Delcourt, J. & LePichon, X. From the Tethys Ocean to the Mediterranean Sea: a plate tectonic model of the evolution of the western alpine system. 143–164 (Technip, Paris, 1976).

    Google Scholar 

  31. Orszag-Sperber, F. et al. in Atlas Tethys Palaeoenvironmental Maps (eds Dercourt, J., Ricou, L. E. & Vrielinck, B.) 243–258 (Gauthier-Villars, Paris, 1993).

    Google Scholar 

  32. Ricou, L. E. Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta (Paris) 7, 169–218 (1994).

    Article  Google Scholar 

  33. Zubakov, V. A., Borzenkova, I. I. Global Palaeoclimate of the Late Cenozoic (Elsevier, Amsterdam, 1990).

    Google Scholar 

  34. Ren, X. in Geological and Ecological Studies of Qinghai-Xizang Plateau (ed. Gordon, B.) 139–144 (Science Press, Beijing, 1981).

    Google Scholar 

  35. Nigrini, C. & Caulet, J. P. Late Neogen radiolarian assemblages characteristics of Indo-Pacific areas of upwelling. Micropaleontology 38, 139–164 (1992).

    Article  Google Scholar 

  36. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396 (1993).

    Article  ADS  Google Scholar 

  37. Traverse, A. Response of world vegetation to Neogene tectonic and climatic events. Alcheringa 6, 197–209 (1982).

    Article  Google Scholar 

  38. Wolfe, J. A. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sunquist, E. T. & Broecker, W. S.) 357–375 (Am Geophys. Union, Washington DC, 1985).

    Google Scholar 

  39. Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).

    Article  ADS  Google Scholar 

  40. Cerling, T. E., Wang, Y. & Quad, J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361, 344–345 (1993).

    Article  ADS  Google Scholar 

  41. Ducrocq, S., Chaimanee, Y., Suteethorn, V. & Jaeger, J. J. Ages and paleoenvironment of Miocene mammalian faunas from Thailand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 149–163 (1994).

    Article  Google Scholar 

  42. Chenggao, G. & Renaut, R. W. The effect of Tibetan uplift on the formation and preservation of Tertiary lacustrine source-rocks in eastern China. J. Paleolimnol. 11, 31–40 (1994).

    Article  ADS  Google Scholar 

  43. Copeland, P., Harrison, T. M., Kidd, W. S. F., Ronghua, X. & Yuquan, Z. Rapid early Miocene acceleration of uplift in the Gangdese belt, Xizang (southern Tibet), and its bearing on accomodation mecanisms of the Indian-Asia collision. Earth Planet. Sci. Lett. 86, 240–252 (1987).

    Article  ADS  CAS  Google Scholar 

  44. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  ADS  CAS  Google Scholar 

  45. Richter, F. M., Lovera, O. M., Harrison, T. M. & Copeland, P. Tibetan tectonics from 40Ar/39Ar analysis of a single K-feldpar sample. Earth Planet. Sci. Lett. 105, 266–278 (1991).

    Article  ADS  CAS  Google Scholar 

  46. Tapponnier, P. et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet. Sci. Lett. 97, 382–403 (1990).

    Article  ADS  Google Scholar 

  47. Baldi, T. The terminal Eocene and Early Oligocene events in Hungary and the separation of an anoxic, cold Paratethys. Eclogae Geol. Helv. 30, 1–27 (1984).

    Google Scholar 

  48. Lorenz, C. et al. in Atlas Tethys Palaeoenvironmental Maps (eds Dercourt, J., Ricou, L. E. & Vrielynck, B.) 211–233 (Gauthier-Villars, Paris, 1993).

    Google Scholar 

  49. Sébrier, M., Lavenu, A., Fornari, M. & Soulas, J. P. Tectonics and uplift in Central Andes (Peru, Bolivia and Northern Chile) from Eocene to present. Geodynamique 3, 85–106 (1988).

    Google Scholar 

  50. Masson, V. & Joussaume, S. Energetics of the 6000 BP atmospheric circumlation in boreal summer, from large scale to monsoon areas: a study with two versions of the LMD AGCM. J. Clim. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramstein, G., Fluteau, F., Besse, J. et al. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997). https://doi.org/10.1038/386788a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386788a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing