Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 18 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 386, 598 - 601 (10 April 1997); doi:10.1038/386598a0

Compression of visual space before saccades

John Ross*, M. Concetta Morrone & David C. Burr

*Department of Psychology, Vision Laboratory, University of Western Australia, Nedlands, Western Australia 6907, Australia
Istituto di Neurofisiologia del CNR, Pisa 56127, Italy
Department of Psychology, Universita di Roma, 'La Sapienza', Via del Marsi 78, Rome 00185, Italy

Saccadic eye movements, in which the eye moves rapidly between two resting positions, shift the position of our retinal images. If our perception of the world is to remain stable, the visual directions associated with retinal sites, and others they report to, must be updated to compensate for changes in the point of gaze. It has long been suspected that this compensation is achieved by a uniform shift of coordinates driven by an extra-retinal position signal1–3, although some consider this to be unnecessary4–6. Considerable effort has been devoted to a search for such a signal and to measuring its time course and accuracy. Here, by using multiple as well as single targets under normal viewing conditions, we show that changes in apparent visual direction anticipate saccades and are not of the same size, or even in the same direction, for all parts of the visual field. We also show that there is a compression of visual space sufficient to reduce the spacing and even the apparent number of pattern elements. The results are in part consistent with electrophysiological findings of anticipatory shifts in the receptive fields of neurons in parietal cortex7 and superior colliculi8.

  1. von Helmholtz, H. Handbuch der physiologische Optik (1866); translated by Southall, J. P. C. Treatise on Physiological Optics (Dover, New York, 1963).
  2. Sperry, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psych. 43, 482−489 (1950). | ISI | ChemPort |
  3. Von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip. Naturwissenschaften 37, 464−476 (1954).
  4. Mackay, D. M. Elevation of visual threshold by dislacemcnt of visual images. Nature 225, 90−92 (1970). | Article | PubMed | ISI | ChemPort |
  5. O'Regan, J. K. Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visible background. Percept. Psychophy. 36, 1−14 (1984).
  6. Sperling, G. in Eye movements and their role ill visual and cognitive processes (ed. Knowier, E.) 307−351 (Elsevicr, Amsterdam, 1990). | ChemPort |
  7. Duhamel, J.-R., Golby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90−92 (1992). | PubMed | ISI | ChemPort |
  8. Walker, M. F., Fitzgibbon, J. & Goldberg, M. E. Neurons of the monkey superior colliculus predict the visual result of impeding saccadic eye movements. J. Neurophysiol. 73, 1988−2003 (1995). | PubMed | ISI | ChemPort |
  9. Matin, L. in Handbook of Sensory Physiology VII/4: Visual Psychophysics (eds. lameson, D. & Hurvich, 1.. M.) 331−380 (Springer, Berlin, 1972).
  10. Dassoiwilie, P., Schlag. J. & Schlag-Rey, M. Oculomotor localization relies on a damped rcspresenta-tion of saccadic eye movement displacement in human and nonhuman primates. Visual Neiirosci. 9, 261−269 (1992).
  11. Bovven, R. W. Latencies for chromatic and achromatic visual mechanisms. Vision Res. 21, 1457−1466 (1981). | PubMed |
  12. Matin, L. & Pearce, D. G. Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148, 1485−1487 (1965). | ISI |
  13. Bischof, N. & Kramer, E. Untersuchungen und Uberlcgungen zur Richtungswahrnehmung bei wilkuerlichen sakkadischen Augenbewegungeii. Psycheil. Forsch. 32, 185−218 (1968). | ChemPort |
  14. Honda, H. Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res. 33, 709−716 (1993). | Article | PubMed | ISI | ChemPort |
  15. Honda, H. Visual mislocalizaiton produced by a rapid image idsplacement displacement on the retina: examination by means ofdichoptic presentation of a target and its background. Vision Res. 35, 3021−3028 (1995). | Article | PubMed | ChemPort |
  16. Burr, D. C., Morrone, M. C. & Ross. J. Selective suppression of the magnoceliular visual pathway during saccadic eye movements. Nature 371, 511−513 (1994). | Article | PubMed | ISI | ChemPort |
  17. Ben Hamed, S. & Duhamel, J.-R., Bremmer, F. & Graf, W. Dynamic changes in visual receptive field organization in the macaque lateral intraparietal area (LIP) during saccade preparation. Soc. Neurosci. Alistr. Part 2, 1619 (1996).
  18. Mishkin M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Nenmsci. 6, 414−417 (1983).
  19. Bridgeman, B. & Stark, L. Ocular propioception and efference copy in registring visual direction. Vision Res. 31, 1903−1913 (1991). | Article | PubMed | ISI | ChemPort |
  20. Deubel, H., Schneider, W. X. & Bridgeman, B. Postsaccdic target blanking prevents saccadic suppression of image displacement. Vision Res. 36, 985−996 (1996). | Article | PubMed | ISI | ChemPort |
  21. Bridgeman, B., Van der Heijden, A. H. C. & Velichkovsky, B. M. A theory of visual stability across saccadic eye movements. Behav. Brain Sri. 17, 247−292 (1994).
  22. Daniel, P. M. & Whitteridge, D. The presentation of the visual field on the cerebral cortex in monkeys. J. Physiol. (l.ond.) 159, 203−221. | ChemPort |



© 1997 Nature Publishing Group
Privacy Policy