Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distribution and cycling of terrigenous dissolved organic matter in the ocean

Abstract

Terrigenous dissolved organic matter (DOM) is continuously discharged by rivers into the ocean, yet its distribution and reactivity within ocean basins remain poorly defined aspects of the global carbon cycle1. Direct evidence for the presence of terrigenous DOM in the open ocean has been found only in dissolved humic substances isolated from surface waters of the eastern equatorial Pacific Ocean2. Here we report the detection of low concentrations of lignin—a biopolymer found only in terrestrial vegetation—in DOM collected from the Pacific and Atlantic oceans, indicating that terrigenous DOM is distributed throughout the ocean water column. Higher lignin concentrations in Atlantic waters, relative to Pacific waters, reflect terrigenous DOM concentrations that are 2.6 times higher in the Atlantic. This finding is consistent with the 3.6-times greater riverine water-discharge to the Atlantic Ocean3,4, and with known patterns of ocean circulation5. It appears that terrigenous DOM comprises only a small fraction (0.7–2.4%) of the total DOM in the ocean, and that its oceanic residence time (21–132yr) is much shorter than that of marine DOM6,7. The regeneration of nutrients during rapid cycling of terrigenous DOM could contribute to high rates of primary production in the coastal ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hedges, J. I. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67–93 (1992).

    Article  CAS  Google Scholar 

  2. Meyers-Schulte, K. J. & Hedges, J. I. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321, 61–63 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Baumgartner, A. & Reichel, E. The World Water Balance (Oldenberg, Munich, 1975).

    Google Scholar 

  4. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans (Prentice-Hall, Englewood Cliffs, NJ, 1942).

    Google Scholar 

  5. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Lamont-Doherty Geological Observatory, Columbia Univ., Palisades, New York, 1982).

    Google Scholar 

  6. Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–248 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Bauer, J. E., Williams, P. M. & Druffel, E. R. M. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357, 667–670 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Meybeck, M. Carbon, nitrogen, and phosphorous transport by world rivers. Am. J. Sci. 282, 401–450 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Ertel, J. R., Hedges, J. I., Devol, A. H., Richey, J. E. & Ribeiro, M. Dissolved humic substances in the Amazon River system. Limnol. Oceanogr. 31, 739–754 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Ittekkot, V. Global trends in the nature of organic matter in river suspensions. Nature 332, 436–438 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Hedges, J. I., Hatcher, P. G., Ertel, J. R. & Meyers-Schulte, K. J. A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry. Geochim. Cosmochim. Acta 56, 1753–1757 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I. & Hatcher, P. G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255, 1561–1564 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Hedges, J. I. & Mann, D. C. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 43, 1803–1807 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Benner, R. in Marine Particles: Analysis and Characterization (eds Hurde, D. C. & Spencer, D. W.) 181–185 (Geophys. Monogr. 63, American Geophysical Union, Washington DC, 1991).

    Google Scholar 

  15. Benner, R. & Hedges, J. I. A test of the accuracy of freshwater DOC measurements by high-temperature catalytic oxidation and UV-promoted persulfate oxidation. Mar. Chem. 41, 161–165 (1993).

    Article  CAS  Google Scholar 

  16. Zafiriou, O. C., Gagosian, R. B., Peltzer, E. T. & Alford, J. B. Air-to-sea fluxes of lipids at Enewetak Atoll. J. Geophys. Res. 90, 2409–2423 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Hedges, J. I. & Ertel, J. R. Characterization of lignin by capillary chromatography of cupric oxide oxidation products. Anal. Chem. 54, 174–178 (1982).

    Article  CAS  Google Scholar 

  18. Moran, M. A., Pomeroy, L. R., Sheppard, E. S., Atkinson, L. P. & Hodson, R. E. Distribution of terrestrially derived dissolved organic matter on the southeastern U.S. continental shelf. Limnol Oceanogr. 36, 1134–1149 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Opsahl, S. & Benner, R. Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 59, 4889–4904 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Stuiver, M., Quay, P. D. & Ostlund, H. G. Abyssal water carbon-14 distribution and the age of the world oceans. Science 219, 849–851 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Sholkovitz, E. R. The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet. Sci. Lett. 40, 130–136 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Mantoura, R. F. C. & Woodward, E. M. S. Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta 47, 1293–1309 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Gardner, W. & Stephens, J. A. Stability and composition of terrestrially derived dissolved organic nitrogen in continental shelf surface waters. Mar. Chem. 6, 335–342 (1978).

    Article  CAS  Google Scholar 

  24. Amon, R. M. W. & Benner, R. Photochemical and microbial consumption of dissovled organic carbon and dissolved oxygen in the Amazon River. Geochim. Cosmochim. Acta 60, 1783–1792 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Kieber, R. J., Zhou, X. & Mopper, K. Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol. Oceanogr. 35, 1503–1515 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Miller, W. L. & Zepp, R. G. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys. Res. Lett. 22, 417–420 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Benner, R., Opasahl, S., Chin-Leo, G., Richey, J. E. & Forsberg, B. R. Bacterial carbon metabolism in the Amazon River. Limnol. Oceanogr. 40, 1262–1270 (1995).

    Article  ADS  Google Scholar 

  28. Pakulski, J. D., Benner, R., Amon, R. M. W., Eadie, B. & Whitledge, T. Community metabolism and nutrient cycling in the Mississippi River plume: evidence for intense nitrification at intermediate salinities. Mar. Ecol. Prog. Ser. 117, 207–218 (1995).

    Article  ADS  Google Scholar 

  29. Bushaw, K. L. et al. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381, 404–407 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opsahl, S., Benner, R. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386, 480–482 (1997). https://doi.org/10.1038/386480a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386480a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing