Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of the rotation of F1-ATPase

Abstract

Cells employ a variety of linear motors, such as myosin1–3, kinesin4 and RNA polymerase5, which move along and exert force on a filamentous structure. But only one rotary motor has been investigated in detail, the bacterial flagellum6 (a complex of about 100 protein molecules7). We now show that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion. A central rotor of radius 1 nm, formed by its γ-subunit, turns in a stator barrel of radius 5nm formed by three α- and three β-subunits8. F1 ATPase, together with the membrane-embedded proton-conducting unit F0, forms the H+-ATP synthase that reversibly couples transmembrane proton flow to ATP synthesis/hydrolysis in respiring and photosynthetic cells9,10. It has been suggested that the γ-subunit of F1-ATPase rotates within the αβ-hexamer11, a conjecture supported by structural8, biochemical12,13 and spectroscopic14 studies. We attached a fluorescent actin filament to the γ-subunit as a marker, which enabled us to observe this motion directly. In the presence of ATP, the filament rotated for more than 100 revolutions in an anticlockwise direction when viewed from the 'membrane' side. The rotary torque produced reached more than 40 pN nm −l under high load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Finer, J. T., Simmons, R. M. & Spudich, J. A. Nature 368, 113–119 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Miyata, H. et al. Biophys. J. 68, 286S–290S (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ishijima, A. et al. Biochem. Biophys. Res. Commun. 199, 1057–1063 (1995).

    Article  Google Scholar 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Nature 365, 721–727 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Yin, H. et al. Science 270, 1653–1657 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Berg, H. C. & Anderson, R. A. Nature 245, 380–382 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Aizawa, S. & Jones, C. J. Adv. Microb. Physiol. 32, 110–172 (1991).

    Google Scholar 

  8. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Nature 370, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Mitchell, P. Nature 191, 144–148 (1961).

    Article  ADS  CAS  Google Scholar 

  10. Kagawa, Y. & Racker, E. J. Biol. Chem 241, 2467–2474 (1966).

    CAS  PubMed  Google Scholar 

  11. Boyer, P. D. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L. & Cross, R. L. Proc. Natl Acad. Sci. USA 92, 10964–10968 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Zhou, Y., Duncan, T. M., Bulygin, V. V., Hutcheon, M. L. & Cross, R. L. Biochim. Biophys. Acta 1275, 96–100 (1996).

    Article  Google Scholar 

  14. Sabert, D., Engelbrecht, S. & Junge, W. Nature 381, 623–625 (1996).

    Article  ADS  Google Scholar 

  15. Noji, H., Amano, T. & Yoshida, M. J. Bioenerg, Biomemb. 28, 451–457 (1996).

    Article  CAS  Google Scholar 

  16. Kunkel, T. A., Bebenek, K. & McClary, J. Meth. Enzymol. 204, 125–139 (1991).

    Article  CAS  Google Scholar 

  17. Aggeler, R. & Capaldi, R. A. J. Biol Chem. 271, 13888–13891 (1996).

    Article  CAS  Google Scholar 

  18. Yoshida, M., Sone, N., Hirata, H. & Kagawa, Y. J. Biol. Chem. 252, 3480–3485 (1977).

    CAS  PubMed  Google Scholar 

  19. Oosawa, F. & Hayashi, S. Adv. Biophys. 22, 151–183 (1986).

    Article  CAS  Google Scholar 

  20. Meister, M., Lowe, G. & Berg, H. C. Cell 49, 643–650 (1987).

    Article  CAS  Google Scholar 

  21. Matsui, T. & Yoshida, M. Biochim. Biophys. Acta 1231, 139–146 (1995).

    Article  Google Scholar 

  22. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. J. Mol. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  23. Sase, I., Miyata, H., Corrie, J. E. T., Craik, J. S. & Kinosita Jr, K. Biophys. J. 69, 323–328 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Hunt, A. J., Gittes, F. & Howard, J. Biophys. J. 67, 766–781 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noji, H., Yasuda, R., Yoshida, M. et al. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997). https://doi.org/10.1038/386299a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386299a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing