Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colossal magnetoresistance in Cr-based chalcogenide spinels

Abstract

Manganese oxides with a perovskite structure1 exhibit a transition between a paramagnetic insulating phase and a ferromagnetic metal phase. Associated with this transition is an effect known as colossal magnetoresistance2–5 (CMR)—in the vicinity of the transition temperature, the materials exhibit a large change in resistance in response to an applied magnetic field. Such an effect, if optimized, might find potential application in magnetic devices. But the criteria for achieving (and hence optimizing) CMR are not clear, presenting a challenge for materials scientists. The accepted description of CMR in the manganite perovskites invokes the 'double-exchange' mechanism, whereby charge transport is enhanced by the magnetic alignment of neighbouring Mn ions of different valence configuration (Mn3+ and Mn4+), and inhibited by the formation of charge-induced localized lattice distortions6,7. Here we report the existence of a large magnetoresistive effect in a class of materials—Cr-based chalcogenide spinels—that do not possess heterovalency, distortion-inducing ions, manganese, oxygen or a perovskite structure. The realization of CMR in compounds having a spinel structure should open up a vast range of materials for the further exploration and exploitation of this effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jonker, G. H. & Van Santen, J. H. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).

    Article  ADS  CAS  Google Scholar 

  2. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Von Helmholt, R. et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx Ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993).

    Article  ADS  Google Scholar 

  4. Chahara, K. et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63, 1990–1992 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Kusters, R. M. et al. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3 . Physica B 155, 362–365 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3 . Phys. Rev. Lett. 77, 175–178 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Röder, H., Zhang, J. & Bishop, A. R. Phys. Rev. Lett. 76, 1356–1359 (1996).

    Article  ADS  Google Scholar 

  8. Parkin, S. S. P. Giant magnetoresistance. Annu. Rev. Mater. Sci. 25, 357–388 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Hwang, H. Y., Cheong, S.-W. & Batlogg, B. Enhancing the low-field magnetoresistive response in perovskite manganites. Appl. Phys. Lett. 68, 3494–3496 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Sun, J. Z. et al. Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganite perovskites. Appl. Phys. Lett. 69, 3266–3268 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lu, Y. et al. Large magnetotunnelling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3 tunnel junctions. Phys. Rev. B 54, 8357–8360 (1996).

    Article  ADS  Google Scholar 

  12. Balzers, P. K., Wojtowicz, P. J., Robbins, M. & Lopatin, E. Exchange interactions in ferromatnetic chromium chalcogenide spinels. Phys. Rev. 151, 367–377 (1966).

    Article  ADS  Google Scholar 

  13. Goldstein, L. & Gibart, P. in Proc. 17th Annu. Conf. on Magnetism and Magnetic Materials (eds Graham, C.D. Jr. & Rhyne, J. J.) 883–886 (AIP Conf. Proc. No. 5 Am. Inst. Phys., New York, 1972).

    Google Scholar 

  14. Amith, A. & Gunsalus, G. L. Unique behavior of Seebeck coefficient in n-type CdCr2Se4 . J. Appl. Phys. 40, 1020–1022 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Haacke, G. & Beegle, L. C. Magnetic properties of the spinel system Fe1−xCuxCr2S4 . J. Phys. Chem. Solids 28, 1699–1704 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Haacke, G. & Beegle, L. C. Chalcogenide spinels. J. Appl. Phys. 39, 656–657 (1968).

    Article  ADS  CAS  Google Scholar 

  17. Haacke, G. & Beegle, L. C. Anomalous thermoelectric power of FeCr2S4 near the Curie temperature. Phys. Rev. Lett. 17, 427–428 (1966).

    Article  ADS  CAS  Google Scholar 

  18. Watanabe, T. Electrical properties of FeCr2S4 and CoCr2S4 . Solid State Commun. 12, 355–358 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Watanabe, T. & Nakada, I. Preparation of some chalcogenide spinel single crystals and their electronic properties. Jpn. J. Appl. Phys. 17, 1745–1754 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Ando, K., Nishihara, Y., Okuda, T. & Tsushima, T. Hall effect and magnetoresistance in Fe1−xCuxCr2S4 . J. Appl. Phys. 50, 1917–1919 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Hwang, H. Y., Cheong, S.-W., Ong, N. P. & Batlogg, B. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Urushibara, A. et al. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3 . Phys. Rev. B 51, 14103–14109 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Lotgering, F. K., Van Stapele, R. P., Van Der Steen, G. H. A. M. & Wieringen, J. S. Magnetic properties of conductivity and ionic ordering in Fe1−xCuxCr2S4 . J. Phys. Chem. Solids 30, 799–804 (1969).

    Article  ADS  CAS  Google Scholar 

  24. Kogan, E. M. & Auslender, M. I. Anderson localization in ferromagnetic semiconductors due to spin disorder. Phys. Stat. Sol. B 147, 613–620 (1988).

    Article  ADS  Google Scholar 

  25. Shimakawa, Y., Kubo, Y. & Manako, T. Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure. Nature 379, 53–55 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Cheong, S.-W., Hwang, H. Y., Batlogg, B. & Rupp, L. W. Jr. Giant magnetoresistance in pyrochlore Tl2−xInxMn2O7 . Solid State Commun. 98, 163–166 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Subramanian, M. A. et al. Colossal magnetoresistance without Mn3+/Mn4+ double exchange in the stoichiometric pyrochlore Tl2Mn2O7 . Science 273, 81–84 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, A., Cava, R. & Krajewski, J. Colossal magnetoresistance in Cr-based chalcogenide spinels. Nature 386, 156–159 (1997). https://doi.org/10.1038/386156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing