Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photonic crystals: putting a new twist on light

An Erratum to this article was published on 19 June 1997

Abstract

Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of 'forbidden' frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. This provides the opportunity to shape and mould the flow of light for photonic information technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Joannopoulos, J., Meade, R. & Winn, J. Photonic Crystals (Princeton Press, Princeton, NJ, 1995).

    MATH  Google Scholar 

  2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  CAS  Google Scholar 

  3. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  CAS  Google Scholar 

  4. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    Article  ADS  Google Scholar 

  5. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  CAS  Google Scholar 

  6. Drake, M. & Genack, A. Observation of nonclassical optical diffusion. Phys. Rev. Lett. 63, 259–262 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Genack, A. & Garcia, N. Observation of photon localization in a three-dimensional disordered system. Phys. Rev. Lett. 66, 2064–2067 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Robertson, W. et al. Measurement of photonic band structure in a two-dimensional periodic dielectric array. Phys. Rev. Lett. 68, 2023–2026 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Meade, R., Brommer, K., Rappe, A. & Joannopoulos, J. Nature of the photonic band gap: some insights from a field analysis. J. Opt. Soc. Am. B 10, 328–332 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Meade, R., Brommer, K., Rappe, A. & Joannopoulos, J. Existence of a photonic band gap in two dimensions. Appl. Phys. Lett. 61, 495–497 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Villeneuve, P. & Piché, M. Photonic band gaps in two-dimensional square and hexagonal structures. Phys. Rev. B 46, 4969–4972 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Grüning, U., Lehmann, V., Ottow, S. & Busch, K. Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm. Appl. Phys. Lett. 68, 747–749 (1996).

  13. Krauss, T., De La Rue, R. & Band, S. Two-dimensional photonic bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Cassagne, D., Jouanin, C. & Bertho, D. Hexagonal photonic-band-gap structures. Phys. Rev. B 53, 7134–7142 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Mekis, A. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Slusher, R. Semiconductor microlasers and their applications. Opt. Photonics News 4 (2), 8–17 (1993).

    Article  ADS  Google Scholar 

  17. Meade, R., Brommer, K., Rappe, A. & Joannopoulos, J. Photonic bound states in periodic dielectric materials. Phys. Rev. B 44, 13772–13774 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Yablonovitch, E. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991).

    Article  ADS  CAS  Google Scholar 

  19. McCall, S., Platzman, P., Dalichaouch, R., Smith, D. & Schultz, S. Microwave propagation in two-dimensional dielectric lattices. Phys. Rev. Lett. 67, 2017–2020 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Leung, K. Defect modes in photonic band structures: a Green's function approach using vector Wannier functions. J. Opt. Soc. Am. B 10, 303–306 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Maradudin, A. & McGurn, A. in Photonic Band Gaps and Localizaiton (ed. Soukoulis, C.) 247–268 (Plenum, New York, 1993).

    Book  Google Scholar 

  22. Fan, S. et al. Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B 12, 1267–1272 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Sigalas, M., Soukoulis, C., Chan, C. & Ho, K. in Photonic Band Gap Materials (ed. Soukoulis, C.) 173–202 (Kluwer, Dordrecht, 1996).

    Book  Google Scholar 

  24. Birks, T., Atkin, D., Wylangowski, G., Russel, P. & Roberts, P. Photonic Band Gap Materials (ed. Soukoulis, C.) 437–444 (Kluwer, Dordrecht, 1996).

    Book  Google Scholar 

  25. Villeneuve, P., Fan, S. & Joannopoulos, J. Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B 54, 7837–7842 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Meade, R. et al. Novel applications of photonic band gap materials: low loss bends and high Q cavities. J. Appl. Phys. 75, 4753–4755 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Villeneuve, P. et al. Air-bridge microcavities. Appl. Phys. Lett. 67, 167–169 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Chen, J., Haus, H., Fan, S. Villeneuve, P. & Joannopoulos, J. Optical filters from photonic band gap air bridges. IEEE J. Lightwave Tech. 14, 2575–2580 (1996).

    Article  ADS  Google Scholar 

  29. Joannopoulos, J. The almost-magical world of photonic crystals. Braz. J. Phys. 26, 58–67 (1996).

    ADS  CAS  Google Scholar 

  30. Yablonovitch, E., Gmitter, T. & Leung, K. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Chan, C., Ho, K. & Soukoulis, C. Photonic band-gaps in experimentally realizable periodic structures. Europhys. Lett. 16, 563–568 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Sözüer, H. & Haus, J. Photonic bands: simple-cubic lattice. J. Opt. Soc. Am. B 10, 296–302 (1993).

    Article  ADS  Google Scholar 

  33. Ho, K., Chan, C., Soukoulis, C., Biswas, R. & Sigalas, M. Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commnun. 89, 413–416 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Sözüer, H. & Dowling, J. Photonic band calculations for woodpile structures. J. Mod. Opt. 41, 231–239 (1994).

    Article  ADS  Google Scholar 

  35. Özbay, E. et al. Micromachined millimeter-wave photonic band-gap crystals. Appl. Phys. Lett. 64, 2059–2061 (1994).

    Article  ADS  Google Scholar 

  36. Cheng, C. & Scherer, A. Fabrication of photonic band-gap crystals. J. Vac. Sci. Technol. B 13, 2696–2700 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Fan, S., Villeneuve, P., Meade, R. & Joannopoulos, J. Design of three-dimensional photonic crystals at submicron lengthscales. Appl. Phys. Lett. 65, 1466–1468 (1994).

    Article  ADS  CAS  Google Scholar 

  38. Brown, R. & McMahon, O. Large electromagnetic stop bands in metallodielectric photonic crystals. Appl. Phys. Lett. 67, 2138–2140 (1995).

    Article  ADS  CAS  Google Scholar 

  39. McGurn, A. & Maradudin, A. Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays. Phys. Rev. 548, 17576–17579 (1993).

    Article  Google Scholar 

  40. Pendry, J. Photonic band structures. J. Mod. Opt. 41, 209–229 (1994).

    Article  ADS  CAS  Google Scholar 

  41. Sigalas, M., Chan, C., Ho, K. & Soukoulis, C. Metallic photonic band-gap materials. Phys. Rev. B 52, 11744–11751 (1995).

    Article  ADS  CAS  Google Scholar 

  42. Fan, S., Villeneuve, P. & Joannopoulos, J. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 54, 11245–11251 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joannopoulos, J., Villeneuve, P. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997). https://doi.org/10.1038/386143a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/386143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing