Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 22 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 386, 78 - 81 (06 March 1997); doi:10.1038/386078a0

Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein

Guangbin Luo*, Patricia Ducy*, Marc D. McKee, Gerald J. Pinero, Evelyne Loyer§, Richard R. Behringer* & Gérard Karsenty*

Departments of*Molecular Genetics, and §Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
Department of Basic Science, Dental Branch-University of Texas, Houston, Texas 77030, USA

Calcification of the extracellular matrix (ECM) can be physiological or pathological. Physiological calcification occurs in bone when the soft ECM is converted into a rigid material capable of sustaining mechanical force; pathological calcification can occur in arteries1 and cartilage2 and other soft tissues. No molecular determinant regulating ECM calcification has yet been identified. A candidate molecule is matrix GLA protein (Mgp), a mineral-binding ECM protein3 synthesized by vascular smooth-muscle cells and chondrocytes, two cell types that produce an uncalcified ECM. Mice that lack Mgp develop to term but die within two months as a result of arterial calcification which leads to bloodvessel rupture. Chondrocytes that elaborate a typical cartilage matrix can be seen in the affected arteries. Mgp-deficient mice additionally exhibit inappropriate calcification of various cartilages, including the growth plate, which eventually leads to short stature, osteopenia and fractures. These results indicate that ECM calcification must be actively inhibited in soft tissues. To our knowledge, Mgp is the first inhibitor of calcification of arteries and cartilage to be characterized in vivo.

  1. Ross, R. Nature 362, 801−809 (1993). | Article | PubMed | ISI | ChemPort |
  2. Manjin, H. J. & Brandt, K. D. Pathogenesis of Osteoarthritis (eds Kelley, W. N., Harris, E. D., Ruddy, S. & Sledge, C. B.) 1469−1479 (Saunders, Philadelphia, 1989).
  3. Hauschka, P., Lian, J., Cole, D. & Gundberg, C. Physiol. Rev. 69, 990−1047 (1989). | PubMed | ISI | ChemPort |
  4. Furie, B. & Furie, B. C. Cell 53, 505−517 (1988). | Article | PubMed | ISI | ChemPort |
  5. Ducy, P. et al. Nature 382, 448−452 (1996). | Article | PubMed | ISI | ChemPort |
  6. Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. Science 269, 1684−1691 (1995). | PubMed | ISI | ChemPort |
  7. Tanimura, A., McGregor, D. H. & Anderson, H. C. J. Exp. Pathol. 2, 261−273 (1986). | PubMed | ChemPort |
  8. Solursh, M. Cell and Matrix Interactions during Limb Chondrogenesis in Virtol (ed. Trelsted, R. L.) 277−303 (Liss, New York, 1984).
  9. Anderson, H. C. J. Cell Biol. 35, 81 (1967). final page? | Article | PubMed | ChemPort |
  10. Tanimura, A., McGregor, D. H. & Anderson, H. C. Proc. Soc. Exp. Biol. Med. 172, 173−177 (1983). | PubMed | ChemPort |
  11. Singleton, E. B. & Merten, D. F. Pediatr. Radiol. 1, 2−7 (1973). | Article | PubMed | ChemPort |
  12. Qiao, J. H. et al. Arterioscler. Thromb. 14, 1480−1497 (1994). | PubMed | ChemPort |
  13. O'Brien, K. D. et al. Circulation 92, 2163−2168 (1995). | PubMed |
  14. Reid, J. D. & Andersen, M. E. Atherosclerosis 101, 213−224 (1993). | PubMed | ChemPort |
  15. Zhang, M. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Science 258, 468−471 (1992). | PubMed | ISI | ChemPort |
  16. Plump, A. S. et al. Cell 71, 343−353 (1992). | Article | PubMed | ISI | ChemPort |
  17. Nakashima, Y., Plump, A. S., Raines, W., Breslow, J. L. & Ross, R. Arterioscler. Thromb. 14, 133−141 (1994). | PubMed | ISI | ChemPort |
  18. Breslow, J. L. Science 272, 685−688 (1996). | PubMed | ISI | ChemPort |
  19. Ross, R. & Bornstein, P. Sci. Am. 224, 44−52 (1971). | PubMed | ChemPort |
  20. Smithies, O. & Maeda, N. Proc. Natl Acad. Sci. USA 92, 5266−5272 (1995). | PubMed | ChemPort |
  21. Karaplis, A. C. et al. Genes Dev. 8, 277−289 (1994). | PubMed | ISI | ChemPort |
  22. Vortkamp, A. et al. Science 273, 613−622 (1996). | PubMed | ISI | ChemPort |
  23. Ramirez-Solis, R., Davis, A. & Bradley, A. Meth. Enzymol. 225, 855−878 (1993). | PubMed | ChemPort |
  24. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Cell 64, 693−702 (1991). | Article | PubMed | ISI | ChemPort |
  25. McMahon, A. P. & Bradley, A. Cell 62, 1073−1085 (1990). | Article | PubMed | ISI | ChemPort |
  26. Kochhar, D. M. Teratology 7, 289−298 (1973). | Article | ISI | ChemPort |
  27. McKee, M. D. & Nanci, A. Microsc. Res. Tech. 33, 141−164 (1996). | Article | PubMed | ChemPort |
  28. Sundin, O. H., Busse, H. G., Rogers, M. B., Gudas, L. J. & Eichele, G. Development 108, 47−58 (1990). | PubMed | ISI | ChemPort |
  29. Wilkinson, D. G. in Situ Hybridization: A Practical Approach (ed. Wilkinson, D. G.) 257−263 (IRL, Oxford, 1992).
  30. Luo, G., D'Souza, R., Hogue, D. & Karsenty, G. J. Bone Min. Res. 10, 325−334 (1995). | ChemPort |



© 1997 Nature Publishing Group
Privacy Policy