Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hrs-2 is an ATPase implicated in calcium-regulated secretion

Abstract

Associations between proteins present on neurotransmitter-containing vesicles and on the presynaptic membrane are thought to underlie docking and fusion of synaptic vesicles with the plasma membrane, which are obligate steps in regulated neurotransmission1–4. SNAP-25 resides on the plasma membrane and interacts with syntaxin (a plasma membrane t-SNARE) and VAMP (a vesicle v-SNARE)1–9 to form a core protein complex thought to be an intermediate in a biochemical pathway that is essential for vesicular transport. We have now characterized a protein, Hrs-2, that interacts with SNAP-25. The binding of Hrs-2 to SNAP-25 is inhibited by calcium in the physiological concentration range that supports synaptic transmission. Furthermore, Hrs-2 binds and hydrolyses nucleoside triphosphates with kinetics that suggest that ATP is the physiological substrate for this enzyme. Hrs-2 is expressed throughout the brain and is present in nerve terminals. Moreover, recombinant Hrs-2 inhibits calcium-triggered 3H-noradrenaline release from permeabilized PC 12 cells. Our results suggest a role for Hrs-2 in regulating secretory processes through calcium- and nucleotide-dependent modulation of vesicle-trafficking protein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bennett, M. K. & Scheller, R. H. Annu. Rev. Biochem. 63, 63–100 (1994).

    Article  CAS  Google Scholar 

  2. Scheller, R. H. Neuron 14, 893–897 (1995).

    Article  CAS  Google Scholar 

  3. Söllner, T. et al. Nature 362, 318–324 (1993).

    Article  ADS  Google Scholar 

  4. Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. Cell 75, 409–418 (1993).

    Article  CAS  Google Scholar 

  5. Chapman, E. R., An, S., Barton, N. & Jahn, R. J. Biol. Chem. 269, 27427–27432 (1994).

    CAS  PubMed  Google Scholar 

  6. Südhof, T. C. Nature 375, 645–653 (1995).

    Article  ADS  Google Scholar 

  7. Pevsner, J. et al. Neuron 13, 353–361 (1994).

    Article  CAS  Google Scholar 

  8. Rothman, J. E. Nature 372, 55–63 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Oyler, G. A. et al. J. Cell. Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  10. Fields, S. & Song, O. Nature 340, 245–246 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Komada, M. & Kitamura, N. Mol. Cell. Biol. 15, 6213–6221 (1995).

    Article  CAS  Google Scholar 

  12. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Nishimura, M. Br. J. Pharmacol. 93, 430–436 (1988).

    Article  CAS  Google Scholar 

  14. Wang, Y. X. & Quastel, D. M. Pflugers Arch. 415, 582–587 (1990).

    Article  CAS  Google Scholar 

  15. Smith, S. & Augustine, G. Trends Neurosci. 11, 458–464 (1988).

    Article  CAS  Google Scholar 

  16. Whiteheart, S. W. et al. J. Cell. Biol. 126, 945–954 (1994).

    Article  CAS  Google Scholar 

  17. Tagaya, M., Wilson, D. W., Brunner, M., Arango, N. & Rothman, J. E. J. Biol. Chem. 268, 2662–26666 (1993).

    CAS  PubMed  Google Scholar 

  18. Morgan, A., Dimaline, R. & Burgoyne, R. D. J. Biol. Chem. 269, 29347–29350 (1994).

    CAS  PubMed  Google Scholar 

  19. Hay, J. C. & Martin, T. F. J. Cell. Biol. 119, 139–151 (1992).

    Article  CAS  Google Scholar 

  20. Kemler, R. Trends Genet. 9, 317–321 (1993).

    Article  CAS  Google Scholar 

  21. Parsons, T. D., Coorssen, J. R., Horstmann, H. & Almers, W. Neuron 15, 1085–1096 (1995).

    Article  CAS  Google Scholar 

  22. Gietz, R. D. & Schiestl, R. H. Yeast 7, 253–263 (1991).

    Article  CAS  Google Scholar 

  23. Kozak, M. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  24. Lomneth, R., Martin, T. F. & DasGupta, B. R. J. Neurochem. 57, 1413–1421 (1991).

    Article  CAS  Google Scholar 

  25. Dever, T. E., Glynias, M. J. & Merrick, W. C. Proc. Natl Acad. Sci. USA 84, 1814–1818 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Cheng, Y.-S. E., Patterson, C. & Staeheli, P. Mol. Cell. Biol. 11, 4717–4725 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bean, A., Seifert, R., Chen, Y. et al. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Nature 385, 826–829 (1997). https://doi.org/10.1038/385826a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385826a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing