Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of the tyrosine kinase c-Src

Abstract

The structure of a large fragment of the c-Src tyrosine kinase, comprising the regulatory and kinase domains and the carboxy-terminal tail, has been determined at 1.7 Å resolution in a closed, inactive state. Interactions among domains, stabilized by binding of the phosphorylated tail to the SH2 domain, lock the molecule in a conformation that simultaneously disrupts the kinase active site and sequesters the binding surfaces of the SH2 and SH3 domains. The structure shows how appropriate cellular signals, or transforming mutations in v-Src, could break these interactions to produce an open, active kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bishop, J. Viral Oncogenes. Cell 42, 23–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of sec. Biochim. Biophys. Acta 1287, 121–149 (1996).

    PubMed  Google Scholar 

  3. Superti-Furga, G. & Courtneidge, S. A. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Yu, H. et al. Solution structure of the SH3 domain and Src and identification of its ligand-binding site. Science 258, 1665–1668 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Musacchio, A., Saraste, M. & Willmanns, M. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nature Struct. Biol. 1, 546–551 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Identification of a ten amino acid proline-rich SH3 binding site. Science 259, 1157–1161 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Mayer, B. J., Jackson, P. K. & Baltimore, D. The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl Acad. Sci. USA 88, 627–631 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Songyang, Z et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Waksman, G., Shoelson, S. E., Pant, N., Cowburn, D. & Kuriyan, J. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72, 779–790 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Eck, M. J., Shoelson, S. E. & Harrison, S. C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Takeya, T. & Hanafusa, H. Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating the transforming virus. Cell 32, 881–890 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Hunter, T. A tail of two src's: mutatis mutandis. Cell 49, 1–4 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Nada, S., Okada, M., MacAuley, A., Cooper, J. A. & Nakagawa, H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351, 69–72 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Matsuda, M., Mayer, B. J., Fukui, Y. & Hanafusa, H. Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248, 1537–1539 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Roussel, R. R., Brodeur, S. R., Shalloway, D. & Laudano, A. P. Selective binding of activated pp60c-src by an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of pp60c-src. Proc. Natl Acad. Sci. USA 88, 10696–10700 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper, J. A. & Howell, B. The when and how of Src regulation. Cell 73, 1051–1054 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Koegl, M., Courtneidge, S. A. & Superti-Furga, G. Structural requirements for the efficient regulation of the Src protein tyrosine kinase by Csk. Oncogene 11, 2317–2329 (1995).

    CAS  PubMed  Google Scholar 

  19. Ellis, B. et al. Purification and characterization of deletional mutations of pp60c-src tyrosine kinase. J. Cell. Biochem. (suppl.) 18B, 276 (1994).

    Google Scholar 

  20. Knighton, D. R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Madhusudan et al. CAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci. 3, 176–187 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Bondt, H. L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hubbard, S. R., Wei, L., Ellis, L. & Hendrickson, W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Mohammadi, M., Schlessinger, J. & Hubbard, S. R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86, 577–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, L. N., Noble, M. E. & Owen, D. J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kato, J. Y. et al. Amino acid substitutions sufficient to convert the nontransforming p60c-src protein to a transforming protein. Mol. Cell. Biol. 6, 4155–4160 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Potts, W. M., Reynolds, A. B., Lansing, T. J. & Parsons, J. T. Activation of pp60c-src transforming potential by mutations altering the structure of an amino terminal domain containing residues 90-95. Oncogene Res. 3, 343–355 (1988).

    CAS  PubMed  Google Scholar 

  29. Superti-Furga, G., Fumagalli, S., Koegl, M., Courtneidge, S. A. & Draetta, G. Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO J. 12, 2625–2634 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levy, J. B. & Brugge, J. S. Biological and biochemical properties of the c-src+ gene product overexpressed in chicken embryo fibroblasts. Mol. Cell. Biol. 9, 3332–3341 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Lim, W. A., Richards, F. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Eck, M. J., Atwell, S. K., Shoelson, S. E. & Harrison, S. C. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Nature 268, 764–769 (1994).

    Article  ADS  Google Scholar 

  34. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. (in the press).

  35. Payne, G., Shoelson, S. E., Gish, G. D., Pawson, T. & Walsh, C. T. Kinetics of p56lck and p60src Src homology 2 domain binding to tyrosine-phosphorylated peptides determined by a competition assay or surface plasmon resonance. Proc. Natl Acad. Sci. USA 90, 4902–4906 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamagushi, H. & Hendrickson, W. A. Structural basis for activation of the human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996).

    Article  ADS  Google Scholar 

  37. Sicheri, F., Moarefi, I. & Kuriyan, J. Nature 385, 602–609 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Boerner, R. J. et al. Correlation of the phosphorylation states of pp60 c-src with tyrosine kinase activity: the intramolecular pY530-SH2 complex retains significant activity if Y419 is phosphorylated. Biochemistry 35, 9519–9525 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Levy, J. B., Iba, H. & Hanafusa, H. Activation of the transforming potential of p60c-src by a single amino acid change. Proc. Natl Acad. Sci. USA 83, 4228–4232 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murphy, S. M., Bergman, M. & Morgan, D. O. Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5290–5300 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okada, M., Howell, B. W., Broome, M. A. & Cooper, J. A. Deletion of the SH3 domain of Src interferes with regulation by the phosphorylated carboxyl-terminal tyrosine. Biol. Chem. 268, 18070–18075 (1993).

    CAS  Google Scholar 

  42. Erpel, T., Superti-Furga, G. & Courtneidge, S. A. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions. EMBO J. 14, 963–975 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haystead, C. M., Gregory, P., Sturgill, T. W. & Haystead, T. A. Gamma-phosphate-linked ATP- sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinase. Eur. J. Biochem. 214, 459–467 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Otwinowski, Z. in Proceedings of the CCP4 Study Weekend (eds Sawyer, L., Isaacs, N. & Burley, S.) 56–62 (SERC Daresbury Laboratory, Daresbury, UK, 1993).

    Google Scholar 

  45. Kabsch, W. Evaluation of single crystal diffraction data from a position sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–776 (1994).

  47. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic Computing and Modeling Methods in Molecular Design (eds Bugg, C. & Ealick, S.) (Springer, NewYork, 1989).

    Google Scholar 

  48. Brunger, A. T. X-PLOR Version 3.0: A System for Crystallography and NMR (Yale University Press, New Haven, CT, 1992).

    Google Scholar 

  49. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Alexandropoulos, K. & Baltimore, D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 10, 1341–1355 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Harrison, S. & Eck, M. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997). https://doi.org/10.1038/385595a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385595a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing