Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptic tagging and long-term potentiation

Abstract

Repeated stimulation of hippocampal neurons can induce an immediate and prolonged increase in synaptic strength that is called long-term potentiation (LTP)β€”the primary cellular model of memory in the mammalian brain1. An early phase of LTP (lasting less than three hours) can be dissociated from late-phase LTP by using inhibitors of transcription and translation2–8. Because protein synthesis occurs mainly in the cell body9–12, whereas LTP is input-specific, the question arises of how the synapse specificity of late LTP is achieved without elaborate intracellular protein trafficking. We propose that LTP initiates the creation of a short-lasting protein-synthesis-independent 'synaptic tag' at the potentiated synapse which sequesters the relevant protein(s) to establish late LTP. In support of this idea, we now show that weak tetanic stimulation, which ordinarily leads only to early LTP, or repeated tetanization in the presence of protein-synthesis inhibitors, each results in protein-synthesis-dependent late LTP, provided repeated tetanization has already been applied at another input to the same population of neurons. The synaptic tag decays in less than three hours. These findings indicate that the persistence of LTP depends not only on local events during its induction, but also on the prior activity of the neuron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss. T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  2. Krug, M., LΓΆssner, B. & Ott, T. Brain Res. Bull. 13, 39–42 (1984).

    ArticleΒ  CASΒ  Google ScholarΒ 

  3. Frey, U., Krug, M., Reymann, K. G. & Matthies, H. Brain Res. 452, 57–65 (1988).

    ArticleΒ  CASΒ  Google ScholarΒ 

  4. Fazeli, M. S., Errington, M. L., Dolphin, A. C. & Bliss, T. V. Brain Res. 473, 51–59 (1988).

    ArticleΒ  CASΒ  Google ScholarΒ 

  5. Otani, S., Marshall, C. J., Tate, W. P., Goddard, G. V. & Abraham, W. C. Neuroscience 28, 519–526 (1989).

    ArticleΒ  CASΒ  Google ScholarΒ 

  6. Fazeli, M. S., Corbet, J., Dunn, M. J., Dolphin, A. C. & Bliss, T. V. P. J. Neurosci. 13, 1346–1353 (1993).

    ArticleΒ  CASΒ  Google ScholarΒ 

  7. Nguyen, P. V., Abel, T. & Kandel, E. R. Science 265, 1104–1107 (1994).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  8. Frey, U., Frey, S., Schollmeier, F. & Krug, M. J. Physiol. 490, 703–711 (1996).

    ArticleΒ  CASΒ  Google ScholarΒ 

  9. Link, W. et al. Proc. Nat; Acad. Sci. USA 92, 5734–5738 (1995).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  10. Davis, L., Banker, G. A. & Steward, O. Nature 330, 477–479 (1987).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  11. Kleiman, R., Banker, G. & Steward, O. Neuron 5, 821–830 (1990).

    ArticleΒ  CASΒ  Google ScholarΒ 

  12. Kang, H. & Schuman, E. M. Science 273, 1402–1406 (1996).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  13. Huang, Y. Y. & Kandel, E. R. Learning & Memory 1, 74–82 (1994).

    CASΒ  Google ScholarΒ 

  14. Frey, U., Schollmeier, K., Reymann, K. G. & Seidenbecher, T. Neuroscience 67, 799–807 (1995).

    ArticleΒ  CASΒ  Google ScholarΒ 

  15. Steward, O. & Falk, P. M. J. Neurosci. 6, 412–423 (1986).

    ArticleΒ  CASΒ  Google ScholarΒ 

  16. Lovinger, D. M. & Routtenberg, A. J. Physiol. (Lond.) 400, 321–333 (1988).

    ArticleΒ  CASΒ  Google ScholarΒ 

  17. StΓ€ubli, U. & Chun, D. J. Neurosci. 16, 853–860 (1996).

    ArticleΒ  Google ScholarΒ 

  18. Hebb, D. O. The Organization of Behaviour (Wiley, New York, 1949).

    Google ScholarΒ 

  19. Larson, J. & Lynch, G. Science 232, 985–988 (1986).

    ArticleΒ  ADSΒ  CASΒ  Google ScholarΒ 

  20. Diamond, D. M., Dunwiddie, T. V. & Rose, G. M. J. Neurosci. 8, 4079–4088 (1988).

    ArticleΒ  CASΒ  Google ScholarΒ 

  21. Malenka, R. C. Neuron 6, 53–60 (1991).

    ArticleΒ  CASΒ  Google ScholarΒ 

  22. Abraham, W. C. & Bear, M. F. Trends Neurosci. 19, 126–130 (1996).

    ArticleΒ  CASΒ  Google ScholarΒ 

  23. Rawlins, J. N. P. Behav. Brain Sci. 479–528 (1985).

  24. Squire, L. R. & Davis, H. P. Annu. Rev. Pharmacol. Toxicol. 21, 323–356 (1981).

    ArticleΒ  CASΒ  Google ScholarΒ 

  25. Brown, R. & Kulik, J. Cognition 5, 73–99 (1977).

    ArticleΒ  Google ScholarΒ 

  26. Stanton, P. K. & Sarvey, J. M. J. Neurosci. 4, 3080–3088 (1984).

    ArticleΒ  CASΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, U., Morris, R. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997). https://doi.org/10.1038/385533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385533a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter β€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing