Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orthogonal motion after-effect illusion predicted by a model of cortical motion processing

Abstract

THE motion after-effect occurs after prolonged viewing of motion; a subsequent stationary scene is perceived as moving in the opposite direction1,2. This illusion is thought to arise because motion is represented by the differential activities of populations of cortical neurons tuned to opposite directions; fatigue in one population leads to an imbalance that favours the opposite direction once the stimulus ceases3. Following adaptation to multiple directions of motion, the after-effect is unidirectional4–6, indicating that motion signals are integrated across all directions. Yet humans can perceive several directions of motion simultaneously7–10. The question therefore arises as to how the visual system can perform both sharp segregation and global integration of motion signals. Here we show in computer simulations that this can occur if excitatory interactions between different directions are sharply tuned while inhibitory interactions are broadly tuned. Our model predicts that adaptation to simultaneous motion in opposite directions will lead to an orthogonal motion after-effect. This prediction was confirmed in psychophysical experiments. Thus, broadly tuned inhibitory interactions are likely to be important in the integration and segregation of motion signals. These interactions may occur in the cortical area MT, which contains motion-sensitive neurons with properties similar to those required by our model11–14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Addams, R. Lond. Edinb. Phil. Mag. J. Sci. 5, 373–374 (1834).

    Google Scholar 

  2. Hiris, E. & Blake, R. Proc. Natl Acad. Sci. USA 89, 9025–9028 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Wohlgemuth, A. Br. J. Psychol. (Mono. Supp.) 1, 1–117 (1911).

    Google Scholar 

  4. Mather, G. Perception 9, 379–392 (1980).

    Article  CAS  Google Scholar 

  5. van Doorn, A. J., Koenderink, J. J. & van de Grind, W. A. Perception 14, 209–224 (1985).

    Article  CAS  Google Scholar 

  6. Verstraten, F. A. J., Fredericksen, R. E. & van de Grind, W. A. Vision. Res. 34, 349–358 (1994).

    Article  CAS  Google Scholar 

  7. Nakayama, K. Vision Res. 25, 625–660 (1995).

    Article  Google Scholar 

  8. Adelson, E. H. & Movshon, J. A. Nature 300, 523–525 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Braddick, O. Trends Neurosci. 16, 263–268 (1993).

    Article  CAS  Google Scholar 

  10. Stoner, G. R., Albright, T. D. & Ramachandran, V. S. Nature 344, 153–155 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Albright, T. D. J. Neurophysiology 52, 1106–1130 (1984).

    Article  CAS  Google Scholar 

  12. Snowden, R. J., Treue, S., Erickson, R. G. & Andersen, R. A. J. Neurosci. 11, 2768–2785 (1991).

    Article  CAS  Google Scholar 

  13. Newsome, W. T., Britten, K. H. & Movshon, J. A. Nature 341, 52–54 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Tootell, R. B. H. et al. Nature 375, 139–141 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Clarke, P. G. H. Vision Res. 17, 1243 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Sutherland, N. S. Q. J. Exp. Psychol. 13, 222–228 (1961).

    Article  Google Scholar 

  17. Grunewald, A. in Advances in Neural Information Processing Systems Vol. 8 (eds Touretzky, D. S., Mozer, M. C. & Hasselmo, M. E.) 837–843 (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  18. Hubel, D. H. & Wiesel, T. N. J. Physiol. 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  19. Grossberg, S. Biol. Cybern. 23, 121–134 (1976).

    Article  CAS  Google Scholar 

  20. Heeger, D. J., Simoncelli, E. P. & Movshon, J. A. Proc. Natl Acad. Sci. USA 93, 623–627 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Grossberg, S. Math. Biosci. 15, 253–285 (1972).

    Article  MathSciNet  Google Scholar 

  22. Giaschi, D., Douglas, R., Marlin, S. & Cynader, M. J. Neurophys. 70, 2024–2034 (1993).

    Article  CAS  Google Scholar 

  23. Verstraten, F., Frederickson, R. E., Grüsser, O. J. & van de Grind, W. A. Vision Res. 34, 1149–1155 (1994).

    Article  CAS  Google Scholar 

  24. Mulligan, J. B. Vision Res. 33, 2021–2030 (1993).

    Article  CAS  Google Scholar 

  25. Mingolla, E., Todd, J. T. & Norman, J. F. Vision Res. 32, 1015–1031 (1992).

    Article  CAS  Google Scholar 

  26. Watamaniuk, S. N. J., Sekuler, R. & Williams, D. W. Vision Res. 29, 47–59 (1989).

    Article  CAS  Google Scholar 

  27. Bradley, D. C., Qian, N. & Andersen, R. A. Nature 373, 609–611 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Qian, N., Andersen, R. A. & Adelson, E. H. J. Neurosci. 14, 7357–7366 (1994).

    Article  CAS  Google Scholar 

  29. Hiris, E. & Blake, R. Vis. Neurosci. 13, 187–197 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunewald, A., Lankheet, M. Orthogonal motion after-effect illusion predicted by a model of cortical motion processing. Nature 384, 358–360 (1996). https://doi.org/10.1038/384358a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384358a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing