Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 26 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 384, 335 - 338 (28 November 1996); doi:10.1038/384335a0

Phase-contrast imaging using polychromatic hard X-rays

S. W. Wilkins, T. E. Gureyev*, D. Gao, A. Pogany & A. W. Stevenson

CSIRO, Division of Materials Science and Technology, Private Bag 33, Clayton South MDC, Victoria 3169, Australia
*Present address: CSIRO Division of Forestry and Forest Products, PB10, Clayton South MDC, Victoria 3169, Austrialia

IN conventional radiography, X-rays which pass through an object along different paths are differentially absorbed, and the intensity pattern of the emerging beam records the distribution of absorbing materials within the sample. An alternative approach is phase-contrast radiography, which instead records variations of the phase of the emerging radiation. Such an approach offers improved contrast sensitivity, especially when imaging weakly absorbing samples. Unfortunately, current phase-contrast imaging techniques1–11 generally require highly monochromatic plane-wave radiation and sophisticated X-ray optics, so their use is greatly restricted. Here we describe and demonstrate a simplified scheme for phase-contrast imaging based on an X-ray source having high spatial (but essentially no chromatic) coherence. The method is compatible with conventional polychromatic micro-focus X-ray tube sources, is well suited to large areas of irradiation, can operate with a lower absorbed dose than traditional X-ray imaging techniques, and should find broad application in clinical, biological and industrial settings.

  1. Bonse, U. & Hart, M. Appl. Phys. Lett. 6, 155−156 (1965); Z Phys. 188, 154−164 (1965); Acta Crystallogr. A 24, 240−245 (1965). | Article | ChemPort |
  2. Momose, A., Takeda, T., Itai, Y. & Hirano, K. Nature Med. 2, 473−475 (1996). | Article | PubMed | ISI | ChemPort |
  3. Forster, E., Goetz, K. & Zaumseil, P. Kristall und Technik 15, 937−945 (1980).
  4. Somenkov, V. A., Tkalich, A. K. & Shilstein, S. S. J. Tech. Phys. 61, 197−201 (1991). | ChemPort |
  5. Belyaevskaya, E. A., Ingal, V. N. & Petrashen, P. V. Soviet Patent No. 4934958 (1991); US Patent No. 5319694 (1992).
  6. Ingal, V. N. & Beliaevskaya, E. A. J. Phys. D; Appl. Phys. 28, 2314−2317 (1995). | Article | ChemPort |
  7. Wilkins, S. W. Aust. Patent Applicn PM 1519/93 (1993); PCT Application PCT/AU94/00480 (1994).
  8. Davis, T. J., Gao, D., Gureyev, T. E., Stevenson, A. W. & Wilkins, S. W. Nature 373, 595−598 (1995); Phys. Rev. Lett. 74, 3173−3176 (1995). | Article | PubMed | ChemPort |
  9. Snigirev, A., Snigireva, I., Suvorov, M., Kocsis, M. & Kohn, V. ESRF Newsl. 23−25 June (1995); Rev. Sci. Instrum. 66, 5486−5492 (1995). | Article | ISI | ChemPort |
  10. Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P. & Schlenker, M. J. Phys. D; Appl. Phys. 29, 133−146 (1996). | Article | ChemPort |
  11. Nugent, K. A., Gureyev, T. E., Cookson, D. F., Paganin, D. & Bamea, Z. Phys. Rev. Lett. 77, 2961−2964 (1996). | Article | PubMed | ISI | ChemPort |
  12. Gabor, D. Nature 161, 777−778 (1948). | ISI |
  13. Wilkins, S. W. Aust. Patent Applicn PN 2112/95; PCT Patent Applicn PCT/AU96/00178 (1995).
  14. Cowley, J. M. Diffraction Physics 3rd edn (North Holland, Amsterdam, 1995).
  15. Guigay, J.-P. Optik 49, 121−125 (1977).
  16. Gureyev, T. E., Roberts, A. & Nugent, K. A. J. Opt. Soc. Am. A 12, 1932−1941 (1995); 12, 1942−1946 (1995). | ISI |



© 1996 Nature Publishing Group
Privacy Policy