Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

G2 cyclins are required for the degradation of G1 cyclins in yeast

Abstract

PROGRESSION of the eukaryotic cell cycle is controlled by cyclin-dependent kinases (CDKs)1. Cdc28, the budding yeast homologue of Cdc2 (Cdkl), is required for both the Gl/S and G2/M transitions of the cell cycle2. The functional specificity of the Cdc28 kinase is determined by its association with Gl or G2 cyclins. Alternation of cell cycle phases is thus mainly due to mechanisms that ensure that one cyclin family succeeds another. Here we show that the G2 cyclins Clbl, Clb2, Clb3 and Clb4 are required for the proteolysis of the Gl cyclins Clnl and Cln2, providing a mechanism for coupling synthesis of G2 cyclins with the disappearance of Gl cyclins. Our data indicate that this pathway involves the Ubc9 ubiquitin-conjugating enzyme3. The Cdc34 ubiquitin-conjugating activity4 may function redundantly with Ubc9, or it may only be involved in Clnl,2 turnover through its role in promoting the degradation of Sicl, a specific inhibitor of Cdc28-Clb complexes5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nigg, E. A. Bioessays 17, 471–480 (1995).

    Article  CAS  Google Scholar 

  2. Nasmyth, K. Curr. Opin. Cell Biol. 5, 166–179 (1993).

    Article  CAS  Google Scholar 

  3. Seufert, W., Futcher, B. & Jentsch, S. Nature 373, 78–81 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Goebl, M. G. et al. Science 241, 1331–1335 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Schwob, E., Böhm, T., Mendenhall, M. & Nasmyth, K. Cell 79, 233–244 (1994).

    Article  CAS  Google Scholar 

  6. Amon, A., Irniger, S. & Nasmyth, K. Cell 77, 1037–1050 (1994).

    Article  CAS  Google Scholar 

  7. Koch, C., Schleiffer, A., Ammerer, G. & Nasmyth, K. Genes Dev. 10, 129–141 (1996).

    Article  CAS  Google Scholar 

  8. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Cell 74, 993–1007 (1993).

    Article  CAS  Google Scholar 

  9. Kuhne, C. & Linder, P. EMBO J. 12, 3437–3447 (1993).

    Article  CAS  Google Scholar 

  10. Schwob, E. & Nasmyth, K. Genes Dev. 7, 1160–1175 (1993).

    Article  CAS  Google Scholar 

  11. Epstein, C. B. & Cross, F. R. Genes Dev. 6, 1695–1706 (1992).

    Article  CAS  Google Scholar 

  12. Fitch, I. et al. Mol. Biol. Cell 3, 805–818 (1992).

    Article  CAS  Google Scholar 

  13. Grandin, N. & Reed, S. I. Mol. Cell. Biol. 13, 2113–2125 (1993).

    Article  CAS  Google Scholar 

  14. Richardson, H., Lew, D. J., Henze, M., Sugimoto, K. & Reed, S. I. Genes Dev. 6, 2021–2034 (1992).

    Article  CAS  Google Scholar 

  15. Barral, Y., Jentsch, S. & Mann, C. Genes Dev. 9, 399–409 (1995).

    Article  CAS  Google Scholar 

  16. Salama, S. R., Hendricks, K. B. & Thorner, J. Mol. Cell Biol. 14, 7953–7966 (1994).

    Article  CAS  Google Scholar 

  17. Wittenberg, C., Sugimoto, K. & Reed, S. I. Cell 62, 225–237 (1990).

    Article  CAS  Google Scholar 

  18. Irniger, S., Piatti, S., Michaelis, C. & Nasmyth, K. Cell 81, 269–278 (1995).

    Article  CAS  Google Scholar 

  19. Nasmyth, K. & Dirick, L. Cell 66, 995–1013 (1991).

    Article  CAS  Google Scholar 

  20. Yaglom, J. et al. Mol. Cell. Biol. 15, 731–741 (1995).

    Article  CAS  Google Scholar 

  21. Tyers, M., Tokiwa, G., Nash, R. & Futcher, B. EMBO J. 11, 1773–1784 (1992).

    Article  CAS  Google Scholar 

  22. Deshaies, R. J., Chau, V. & Kirschner, M. EMBO J. 14, 303–312 (1995).

    Article  CAS  Google Scholar 

  23. Willems, A. R. et al. Cell 86, 453–463 (1996).

    Article  CAS  Google Scholar 

  24. Bai, C. et al. Cell 86, 263–274 (1996).

    Article  CAS  Google Scholar 

  25. Mendenhall, M. D. Science 259, 216–219 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Nugroho, T. T. & Mendenhall, M. D. Mol. Cell. Biol. 14, 3320–3328 (1994).

    Article  CAS  Google Scholar 

  27. Schneider, B. L., Yang, Q. H. & Futcher, A. B. Science 272, 560–562 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Tyers, M. Proc. Natl Acad. Sci. USA 93, 7772–7776 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blondel, M., Mann, C. G2 cyclins are required for the degradation of G1 cyclins in yeast. Nature 384, 279–282 (1996). https://doi.org/10.1038/384279a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384279a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing