Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 20 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 384, 250 - 252 (21 November 1996); doi:10.1038/384250a0

Self-assembly of organic films on a liquid metal

Olaf M. Magnussen*, Benjamin M. Ocko*, Moshe Deutsch, Michael J. Regan§, Peter S. Pershan§, Douglas Abernathy, Gerhard Grübel & Jean-François Legrand

*Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
Physics Department, Bar-llan University, Ramat-Gan 52100, Israel
§Division of Applied Science & Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
European Synchrotron Radiation Facility, BP 220, 38041 Grenoble Cedex, France
Laboratoire de Spectrometrie Physique, UJF, BP 53, 38403 Grenoble Cedex, France
Present address: Universitat Ulm, Abt. Oberflachenchemie und Katalyse, 89069 Ulm, Germany.

THE structure and phase behaviour of organic thin films result from the subtle interplay of intermolecular Van der Waals interactions, which promote self-assembly and long-ranged order, and the more complex interactions between the end groups of the organic chains and the substrate. The structure of molecular films of amphiphiles has been extensively studied on subphases of dielectric liquids, notably water (Langmuir mono-layers) and on solid surfaces (self-assembled monolayers, SAMs)1–4. Here we report structural studies, by synchrotron X-ray scattering, of an intermediate case: densely packed alka-nethiol films on the surface of liquid mercury. While, like SAMs, these films form strong chemical bonds to the subphase, this subphase is smooth and unstructured, as in the case of Langmuir monolayers. But unlike either of these1,2,5–7, our films have no in-plane long-range order. We suggest that the strong interaction of the thiol group with the underlying disordered liquid dominates here over the order-promoting interactions of the alkyl chains.

  1. Knobler, C. M. J. Phys. 3, 17−22 (1991).
  2. Als-Nielsen, J., Jacquemain, D., Kjaer, D., Leveiller, F. & Leiserowitz, L. Phys. Rep. 246, 252−313 (1994).
  3. Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir Blodgett to Self Assembly (Academic, Boston, 1991).
  4. Tredgold, R. H. Order in Thin Organic Films (Cambridge Univ. Press, 1994).
  5. Fenter, P., Eisenberger, P. & Liang, K. S. Phys. Rev. Lett. 70, 2447−2450 (1993). | Article | PubMed | ChemPort |
  6. Strong, L. & Whitesides, G. M. Langmuir 4, 546−558 (1988). | Article | ChemPort |
  7. Chidsey, C. E. D., Liu, G.-Y., Rowentree, P. & Scoles, G. J. J. Chem. Phys. 91, 4421−4423 (1989). | Article | ChemPort |
  8. Rappe, A. K. et al. J. Am. Chem. Soc. 114, 10024−10035 (1992). | Article | ISI | ChemPort |
  9. Weast, R. C., Astle, M. J. & Beyer, W. H. (eds) CRC Handbook of Chemistry and Physics 66th Edn F174−F184 (CRC Press, Boca Raton, 1986).
  10. Smith, T. Adv. Colloid Interface Sci. 3, 161−221 (1972). | Article | ChemPort |
  11. De Levie, R. Chem. Rev. 88, 599−609 (1988). | Article | ChemPort |
  12. Buess-Herrman, C. Prog. Surf. Sci. 46, 335−375 (1994).
  13. Magnussen, O. M. et al. Phys. Rev. Lett. 74, 4444−4447 (1995). | Article | PubMed | ISI | ChemPort |
  14. Barton, S. W. et al. Nature 321, 685−687 (1986). | Article | ISI | ChemPort |
  15. Regen, M. J. et al. Phys. Rev. Lett. 75, 2498−2501 (1995). | Article | PubMed | ISI | ChemPort |
  16. Pershan, P. S. & Als-Nielsen, J. Phys. Rev. Lett. 52, 759−762 (1984). | Article | ChemPort |
  17. Weinbach, S. P. et al. Adv. Mat. 7, 857−862 (1995). | Article | ChemPort |
  18. Wu, X. Z. et al. Phys. Rev. Lett. 70, 958−961 (1993). | Article | PubMed | ChemPort |
  19. Grübel, G., Als-Nielsen, J. & Freund, A. K. J. de Phys. IV 4, 27−34 (1994).



© 1996 Nature Publishing Group
Privacy Policy