Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-replicating amphiphilic monolayers

Abstract

MOLECULAR films with predetermined layered structures can be engineered by using techniques such as the Langmuir–Blodgett method1,2 and self-assembly1,3–9 to deposit discrete monolayers sequentially on a substrate. Such films might have a variety of uses—as smart surface coatings, nonlinear optical materials and in tribology, for example. Here we report the replicative growth of a molecular film of self-assembling silane bilayers with hydrogen-interlayer polar regions into which further identical bilayers can be intercalated. The intercalation step is triggered by a chemical treatment and so can be carried out controllably, allowing duplication in one step of an entire multilayer structure. In this way, we can achieve the stepwise exponential growth of a multilayer film with a predictable number of stacked bilayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ulman, A. An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly (Academic, Boston, 1991).

    Google Scholar 

  2. Kuhn, H. & Möbius, D. in Physical Methods of Chemistry (eds Rossiter, B. W. & Baetzold, R. C.) 375–542 (Wiley, New York, 1993).

    Google Scholar 

  3. Maoz, R., Netzer, L., Gun, J. & Sagiv, J. J. Chim. Phys. 85, 1059–1065 (1988).

    Article  CAS  Google Scholar 

  4. Keller, S. W., Kim, H.-N. & Mallouk, T. E. J. Am. Chem. Soc. 116, 8817–8818 (1994).

    Article  CAS  Google Scholar 

  5. Thompson, M. E. Chem. Mater. 6, 1168–1175 (1994).

    Article  CAS  Google Scholar 

  6. Byrd, H. et al. J. Am. Chem. Soc. 116, 295–301 (1994).

    Article  CAS  Google Scholar 

  7. Decher, G., Hong, J.-D., Lowack, K., Lvov, Y. & Schmitt, J. in Self-Production of Supramolecular Structures From Synthetic Structures to Models of Minimal Living Systems (eds Fleischaker, G. R., Colonna, S. & Luisi, P. L.) 267–272 (NATO ASI Ser. C. Vol. 446, Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

  8. Li, D.-Q. et al. J. Am. Chem. Soc. 112, 7389–7390 (1990).

    Article  CAS  Google Scholar 

  9. Ogawa, K., Mino, N., Tamura, H. & Hatada, M. Langmuir 6, 851–856 (1990).

    Article  CAS  Google Scholar 

  10. Cairns-Smith, A. G. Genetic Takeover and the Mineral Origins of Life (Cambridge Univ. Press, 1982).

    Google Scholar 

  11. Orgel, L. E. Nature 358, 203–209 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Self-Production of Supramolecular Structures From Synthetic Structures to Models of Minimal Living Systems (eds Fleischaker, G. R., Colonna, S. & Luisi, P. L) (NATO ASI Ser. C. Vol. 446, Kluwer Academic, Dordrecht, 1994).

  13. Kuhn, H. & Waser, J. in The Lock-and-Key Principle The State of the Art—100 Years On (ed. Behr, J.–P.) 247–306 (Wiley, Chichester, 1994).

    Google Scholar 

  14. Lehn, J.-M. Angew. Chem. Int. Edn. Engl. 29, 1304–1319 (1990).

    Article  Google Scholar 

  15. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Müller, W. et al. Science 262, 1706–1708 (1993).

    Article  ADS  Google Scholar 

  17. Fuhrhop, J.-H. & Krull, M. in Frontiers in Supramolecular Organic Chemistry and Photochemistry (eds Schneider, H.-J. & Dürr, H.) 223–249 (VCH, Weinheim, 1991).

    Google Scholar 

  18. Ozin, G. A. Adv. Mater. 4, 612–649 (1992).

    Article  CAS  Google Scholar 

  19. Maoz, R., Yam, R., Berkovic, G. & Sagiv, J. in Thin Films Vol. 20 (ed. Ulman, A.) 41–68 (Academic, San Diego, 1995).

    Article  CAS  Google Scholar 

  20. Maoz, R., Sagiv, J., Degenhardt, D., Möohwald, H. & Quint, P. Supramol. Sci. 2, 9–24 (1995).

    Article  CAS  Google Scholar 

  21. Casal, H., Cameron, D. G. & Mantsch, H. Can. J. Chem. 61, 1736–1742 (1983).

    Article  CAS  Google Scholar 

  22. Jones, R. N., McKay, A. F. & Sinclair, R. G. J. Am. Chem. Soc. 74, 2575–2578 (1952).

    Article  CAS  Google Scholar 

  23. Nuzzo, R. G., Dubois, L. H. & Allara, D. L. J. Am. Chem. Soc. 112, 558–569 (1990).

    Article  CAS  Google Scholar 

  24. Andrianov, K. A. & Izmaylov, B. A. J. Organomet. Chem. 8, 435–450 (1967).

    Article  CAS  Google Scholar 

  25. Maoz, R. & Sagiv, J. J. Colloid Interface Sci. 100, 465–496 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Parikh, A. N., Allara, D. L., Ben Azouz, I. & Rondelez, F. J. Phys. Chem. 98, 7577–7590 (1994).

    Article  CAS  Google Scholar 

  27. Weiss, A. Angew. Chem. Int. Edn Engl. 20, 850–860 (1981).

    Article  Google Scholar 

  28. Bachmann, P. A., Luisi, P. L. & Lang, J. Nature 357, 57–59 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Fleischaker, G. R. in Self-Production of Supramolecular Structures From Synthetic Structures to Models of Minimal Living Systems (eds Fleischaker, G. R., Colonna, S. & Luisi, P. L.) 33–41 (NATO ASI ser. C. Vol. 446, Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maoz, R., Matlis, S., DiMasi, E. et al. Self-replicating amphiphilic monolayers. Nature 384, 150–153 (1996). https://doi.org/10.1038/384150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing